Properties

Label 2-59-59.58-c6-0-6
Degree $2$
Conductor $59$
Sign $-0.962 - 0.269i$
Analytic cond. $13.5731$
Root an. cond. $3.68418$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.85i·2-s + 13.0·3-s + 49.1·4-s − 100.·5-s + 50.4i·6-s − 365.·7-s + 435. i·8-s − 557.·9-s − 386. i·10-s − 61.8i·11-s + 643.·12-s + 4.00e3i·13-s − 1.40e3i·14-s − 1.31e3·15-s + 1.46e3·16-s − 670.·17-s + ⋯
L(s)  = 1  + 0.481i·2-s + 0.485·3-s + 0.768·4-s − 0.803·5-s + 0.233i·6-s − 1.06·7-s + 0.851i·8-s − 0.764·9-s − 0.386i·10-s − 0.0464i·11-s + 0.372·12-s + 1.82i·13-s − 0.512i·14-s − 0.389·15-s + 0.358·16-s − 0.136·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.962 - 0.269i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 59 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.962 - 0.269i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(59\)
Sign: $-0.962 - 0.269i$
Analytic conductor: \(13.5731\)
Root analytic conductor: \(3.68418\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{59} (58, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 59,\ (\ :3),\ -0.962 - 0.269i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.132780 + 0.967121i\)
\(L(\frac12)\) \(\approx\) \(0.132780 + 0.967121i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad59 \( 1 + (-1.97e5 - 5.53e4i)T \)
good2 \( 1 - 3.85iT - 64T^{2} \)
3 \( 1 - 13.0T + 729T^{2} \)
5 \( 1 + 100.T + 1.56e4T^{2} \)
7 \( 1 + 365.T + 1.17e5T^{2} \)
11 \( 1 + 61.8iT - 1.77e6T^{2} \)
13 \( 1 - 4.00e3iT - 4.82e6T^{2} \)
17 \( 1 + 670.T + 2.41e7T^{2} \)
19 \( 1 + 4.25e3T + 4.70e7T^{2} \)
23 \( 1 - 6.23e3iT - 1.48e8T^{2} \)
29 \( 1 + 741.T + 5.94e8T^{2} \)
31 \( 1 + 4.93e4iT - 8.87e8T^{2} \)
37 \( 1 - 5.81e4iT - 2.56e9T^{2} \)
41 \( 1 - 6.74e4T + 4.75e9T^{2} \)
43 \( 1 + 4.06e4iT - 6.32e9T^{2} \)
47 \( 1 - 1.99e4iT - 1.07e10T^{2} \)
53 \( 1 - 1.64e5T + 2.21e10T^{2} \)
61 \( 1 + 1.01e5iT - 5.15e10T^{2} \)
67 \( 1 - 1.20e5iT - 9.04e10T^{2} \)
71 \( 1 - 4.38e4T + 1.28e11T^{2} \)
73 \( 1 + 4.94e4iT - 1.51e11T^{2} \)
79 \( 1 + 6.58e5T + 2.43e11T^{2} \)
83 \( 1 - 9.30e5iT - 3.26e11T^{2} \)
89 \( 1 - 3.83e5iT - 4.96e11T^{2} \)
97 \( 1 + 3.79e5iT - 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.61815418270711665977490740149, −13.48524597445712745645536683138, −11.92421758326211646021255157814, −11.25583198196343858395581654613, −9.513694460489204898858328196774, −8.311665609679366652412552271739, −7.09207423306693249364856032490, −6.05766563909247107582226736146, −3.88377926318059913488992404368, −2.38613479711768621972856128922, 0.34625703794940649380845418517, 2.69564030838615853252319213102, 3.56644923458120810266503398676, 5.93577722657179614750357149510, 7.36099560662932445700476211223, 8.547105027619275888114772629513, 10.10038869451754200681223178827, 11.04950775133663448587466865191, 12.30737898534643674901272160082, 13.02618729972761385941363995547

Graph of the $Z$-function along the critical line