L(s) = 1 | + 3.85i·2-s + 13.0·3-s + 49.1·4-s − 100.·5-s + 50.4i·6-s − 365.·7-s + 435. i·8-s − 557.·9-s − 386. i·10-s − 61.8i·11-s + 643.·12-s + 4.00e3i·13-s − 1.40e3i·14-s − 1.31e3·15-s + 1.46e3·16-s − 670.·17-s + ⋯ |
L(s) = 1 | + 0.481i·2-s + 0.485·3-s + 0.768·4-s − 0.803·5-s + 0.233i·6-s − 1.06·7-s + 0.851i·8-s − 0.764·9-s − 0.386i·10-s − 0.0464i·11-s + 0.372·12-s + 1.82i·13-s − 0.512i·14-s − 0.389·15-s + 0.358·16-s − 0.136·17-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)(−0.962−0.269i)Λ(7−s)
Λ(s)=(=(59s/2ΓC(s+3)L(s)(−0.962−0.269i)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
−0.962−0.269i
|
Analytic conductor: |
13.5731 |
Root analytic conductor: |
3.68418 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ59(58,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :3), −0.962−0.269i)
|
Particular Values
L(27) |
≈ |
0.132780+0.967121i |
L(21) |
≈ |
0.132780+0.967121i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1+(−1.97e5−5.53e4i)T |
good | 2 | 1−3.85iT−64T2 |
| 3 | 1−13.0T+729T2 |
| 5 | 1+100.T+1.56e4T2 |
| 7 | 1+365.T+1.17e5T2 |
| 11 | 1+61.8iT−1.77e6T2 |
| 13 | 1−4.00e3iT−4.82e6T2 |
| 17 | 1+670.T+2.41e7T2 |
| 19 | 1+4.25e3T+4.70e7T2 |
| 23 | 1−6.23e3iT−1.48e8T2 |
| 29 | 1+741.T+5.94e8T2 |
| 31 | 1+4.93e4iT−8.87e8T2 |
| 37 | 1−5.81e4iT−2.56e9T2 |
| 41 | 1−6.74e4T+4.75e9T2 |
| 43 | 1+4.06e4iT−6.32e9T2 |
| 47 | 1−1.99e4iT−1.07e10T2 |
| 53 | 1−1.64e5T+2.21e10T2 |
| 61 | 1+1.01e5iT−5.15e10T2 |
| 67 | 1−1.20e5iT−9.04e10T2 |
| 71 | 1−4.38e4T+1.28e11T2 |
| 73 | 1+4.94e4iT−1.51e11T2 |
| 79 | 1+6.58e5T+2.43e11T2 |
| 83 | 1−9.30e5iT−3.26e11T2 |
| 89 | 1−3.83e5iT−4.96e11T2 |
| 97 | 1+3.79e5iT−8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.61815418270711665977490740149, −13.48524597445712745645536683138, −11.92421758326211646021255157814, −11.25583198196343858395581654613, −9.513694460489204898858328196774, −8.311665609679366652412552271739, −7.09207423306693249364856032490, −6.05766563909247107582226736146, −3.88377926318059913488992404368, −2.38613479711768621972856128922,
0.34625703794940649380845418517, 2.69564030838615853252319213102, 3.56644923458120810266503398676, 5.93577722657179614750357149510, 7.36099560662932445700476211223, 8.547105027619275888114772629513, 10.10038869451754200681223178827, 11.04950775133663448587466865191, 12.30737898534643674901272160082, 13.02618729972761385941363995547