L(s) = 1 | − 11.1i·2-s − 46.4·3-s − 59.3·4-s + 157.·5-s + 516. i·6-s + 407.·7-s − 51.1i·8-s + 1.43e3·9-s − 1.75e3i·10-s + 2.36e3i·11-s + 2.76e3·12-s − 1.83e3i·13-s − 4.53e3i·14-s − 7.34e3·15-s − 4.36e3·16-s + 1.70e3·17-s + ⋯ |
L(s) = 1 | − 1.38i·2-s − 1.72·3-s − 0.928·4-s + 1.26·5-s + 2.39i·6-s + 1.18·7-s − 0.0999i·8-s + 1.96·9-s − 1.75i·10-s + 1.77i·11-s + 1.59·12-s − 0.835i·13-s − 1.65i·14-s − 2.17·15-s − 1.06·16-s + 0.347·17-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)(−0.423+0.905i)Λ(7−s)
Λ(s)=(=(59s/2ΓC(s+3)L(s)(−0.423+0.905i)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
−0.423+0.905i
|
Analytic conductor: |
13.5731 |
Root analytic conductor: |
3.68418 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ59(58,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :3), −0.423+0.905i)
|
Particular Values
L(27) |
≈ |
0.797907−1.25451i |
L(21) |
≈ |
0.797907−1.25451i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1+(−8.70e4+1.86e5i)T |
good | 2 | 1+11.1iT−64T2 |
| 3 | 1+46.4T+729T2 |
| 5 | 1−157.T+1.56e4T2 |
| 7 | 1−407.T+1.17e5T2 |
| 11 | 1−2.36e3iT−1.77e6T2 |
| 13 | 1+1.83e3iT−4.82e6T2 |
| 17 | 1−1.70e3T+2.41e7T2 |
| 19 | 1−1.01e4T+4.70e7T2 |
| 23 | 1+1.16e4iT−1.48e8T2 |
| 29 | 1−5.12e3T+5.94e8T2 |
| 31 | 1−1.89e4iT−8.87e8T2 |
| 37 | 1+9.20e4iT−2.56e9T2 |
| 41 | 1−7.36e4T+4.75e9T2 |
| 43 | 1−5.20e3iT−6.32e9T2 |
| 47 | 1+7.90e4iT−1.07e10T2 |
| 53 | 1+1.32e5T+2.21e10T2 |
| 61 | 1−2.06e5iT−5.15e10T2 |
| 67 | 1−3.66e5iT−9.04e10T2 |
| 71 | 1−6.82e5T+1.28e11T2 |
| 73 | 1−1.32e4iT−1.51e11T2 |
| 79 | 1+4.18e5T+2.43e11T2 |
| 83 | 1−5.57e4iT−3.26e11T2 |
| 89 | 1+1.20e6iT−4.96e11T2 |
| 97 | 1+1.41e5iT−8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.82439041886556220669546059543, −12.24478162939522818138915615489, −11.21261679745340911140290230017, −10.32550493445283692085184671623, −9.687385165576239902356227464997, −7.16255698612963749523875609218, −5.54869536452045317509234837978, −4.64712903698493702752979245743, −2.03755499453992696242291846095, −0.985037163490887919361031882775,
1.23052924848523117004542016202, 5.00971882997659305124709334685, 5.69041583533323128071158577049, 6.43123533069457545046283511626, 7.88086612476645624934462227265, 9.488991151789635106375013558955, 11.09181233466197071692612212874, 11.63988912624347906370839132513, 13.62029181168321534776860756931, 14.15715574736590079574872061008