L(s) = 1 | − 10.3i·2-s + 12.0·3-s − 44.1·4-s − 27.1·5-s − 125. i·6-s + 631.·7-s − 206. i·8-s − 583.·9-s + 282. i·10-s − 1.42e3i·11-s − 532.·12-s − 1.31e3i·13-s − 6.56e3i·14-s − 327.·15-s − 4.97e3·16-s + 3.33e3·17-s + ⋯ |
L(s) = 1 | − 1.29i·2-s + 0.447·3-s − 0.689·4-s − 0.217·5-s − 0.581i·6-s + 1.84·7-s − 0.403i·8-s − 0.800·9-s + 0.282i·10-s − 1.06i·11-s − 0.308·12-s − 0.599i·13-s − 2.39i·14-s − 0.0970·15-s − 1.21·16-s + 0.678·17-s + ⋯ |
Λ(s)=(=(59s/2ΓC(s)L(s)(−0.843+0.536i)Λ(7−s)
Λ(s)=(=(59s/2ΓC(s+3)L(s)(−0.843+0.536i)Λ(1−s)
Degree: |
2 |
Conductor: |
59
|
Sign: |
−0.843+0.536i
|
Analytic conductor: |
13.5731 |
Root analytic conductor: |
3.68418 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ59(58,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 59, ( :3), −0.843+0.536i)
|
Particular Values
L(27) |
≈ |
0.616357−2.11859i |
L(21) |
≈ |
0.616357−2.11859i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 59 | 1+(−1.73e5+1.10e5i)T |
good | 2 | 1+10.3iT−64T2 |
| 3 | 1−12.0T+729T2 |
| 5 | 1+27.1T+1.56e4T2 |
| 7 | 1−631.T+1.17e5T2 |
| 11 | 1+1.42e3iT−1.77e6T2 |
| 13 | 1+1.31e3iT−4.82e6T2 |
| 17 | 1−3.33e3T+2.41e7T2 |
| 19 | 1−1.22e3T+4.70e7T2 |
| 23 | 1−141.iT−1.48e8T2 |
| 29 | 1−798.T+5.94e8T2 |
| 31 | 1+2.40e4iT−8.87e8T2 |
| 37 | 1−7.66e4iT−2.56e9T2 |
| 41 | 1−6.84e4T+4.75e9T2 |
| 43 | 1+4.06e4iT−6.32e9T2 |
| 47 | 1+1.48e5iT−1.07e10T2 |
| 53 | 1−1.58e5T+2.21e10T2 |
| 61 | 1−1.78e5iT−5.15e10T2 |
| 67 | 1−1.92e5iT−9.04e10T2 |
| 71 | 1+1.64e5T+1.28e11T2 |
| 73 | 1−6.68e5iT−1.51e11T2 |
| 79 | 1−3.50e5T+2.43e11T2 |
| 83 | 1−6.24e4iT−3.26e11T2 |
| 89 | 1−7.03e5iT−4.96e11T2 |
| 97 | 1+1.11e6iT−8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.40602048254544278632598331444, −11.72198888491125519978992416164, −11.43999852210106497769370452721, −10.27384407455061716695338823799, −8.684897137069266513299297416097, −7.83987169415959283214196657921, −5.47501255585419372775794687249, −3.77590529451141383524395423269, −2.41096016798192428979098829323, −0.921044184957557780408251163895,
2.01651397261087380791126460585, 4.50560612409528512465216074277, 5.65494538453628551524196093032, 7.40505550735955109913183609263, 8.020541231594115899557051958997, 9.118723957007729734234145191227, 11.05729736128249683291228860009, 12.00613150354401551075373867847, 14.00633936708063670418203183272, 14.48730194243056004499344964236