L(s) = 1 | + 3-s − 2·5-s − 7-s − 2·9-s − 11-s − 6·13-s − 2·15-s − 4·17-s + 8·19-s − 21-s − 6·23-s − 25-s − 5·27-s + 2·29-s + 4·31-s − 33-s + 2·35-s − 37-s − 6·39-s + 7·41-s − 2·43-s + 4·45-s − 9·47-s − 6·49-s − 4·51-s − 3·53-s + 2·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.894·5-s − 0.377·7-s − 2/3·9-s − 0.301·11-s − 1.66·13-s − 0.516·15-s − 0.970·17-s + 1.83·19-s − 0.218·21-s − 1.25·23-s − 1/5·25-s − 0.962·27-s + 0.371·29-s + 0.718·31-s − 0.174·33-s + 0.338·35-s − 0.164·37-s − 0.960·39-s + 1.09·41-s − 0.304·43-s + 0.596·45-s − 1.31·47-s − 6/7·49-s − 0.560·51-s − 0.412·53-s + 0.269·55-s + ⋯ |
Λ(s)=(=(592s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(592s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+T |
good | 3 | 1−T+pT2 |
| 5 | 1+2T+pT2 |
| 7 | 1+T+pT2 |
| 11 | 1+T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1−8T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1−4T+pT2 |
| 41 | 1−7T+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1+9T+pT2 |
| 53 | 1+3T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1−4T+pT2 |
| 67 | 1+pT2 |
| 71 | 1+7T+pT2 |
| 73 | 1−7T+pT2 |
| 79 | 1+pT2 |
| 83 | 1+3T+pT2 |
| 89 | 1+12T+pT2 |
| 97 | 1+8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.969562582054726543474486278240, −9.494663490575910035621177927785, −8.289160116966715982503627200518, −7.75456110220713984165022091972, −6.86682095955105512061953544939, −5.55163436815551852246094638061, −4.49161097993379934705251491217, −3.32391285921883791433244095783, −2.42130817560810783959503841896, 0,
2.42130817560810783959503841896, 3.32391285921883791433244095783, 4.49161097993379934705251491217, 5.55163436815551852246094638061, 6.86682095955105512061953544939, 7.75456110220713984165022091972, 8.289160116966715982503627200518, 9.494663490575910035621177927785, 9.969562582054726543474486278240