Properties

Label 2-592-1.1-c1-0-15
Degree $2$
Conductor $592$
Sign $-1$
Analytic cond. $4.72714$
Root an. cond. $2.17419$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s − 7-s − 2·9-s − 11-s − 6·13-s − 2·15-s − 4·17-s + 8·19-s − 21-s − 6·23-s − 25-s − 5·27-s + 2·29-s + 4·31-s − 33-s + 2·35-s − 37-s − 6·39-s + 7·41-s − 2·43-s + 4·45-s − 9·47-s − 6·49-s − 4·51-s − 3·53-s + 2·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s − 0.377·7-s − 2/3·9-s − 0.301·11-s − 1.66·13-s − 0.516·15-s − 0.970·17-s + 1.83·19-s − 0.218·21-s − 1.25·23-s − 1/5·25-s − 0.962·27-s + 0.371·29-s + 0.718·31-s − 0.174·33-s + 0.338·35-s − 0.164·37-s − 0.960·39-s + 1.09·41-s − 0.304·43-s + 0.596·45-s − 1.31·47-s − 6/7·49-s − 0.560·51-s − 0.412·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(592\)    =    \(2^{4} \cdot 37\)
Sign: $-1$
Analytic conductor: \(4.72714\)
Root analytic conductor: \(2.17419\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 592,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + T \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.969562582054726543474486278240, −9.494663490575910035621177927785, −8.289160116966715982503627200518, −7.75456110220713984165022091972, −6.86682095955105512061953544939, −5.55163436815551852246094638061, −4.49161097993379934705251491217, −3.32391285921883791433244095783, −2.42130817560810783959503841896, 0, 2.42130817560810783959503841896, 3.32391285921883791433244095783, 4.49161097993379934705251491217, 5.55163436815551852246094638061, 6.86682095955105512061953544939, 7.75456110220713984165022091972, 8.289160116966715982503627200518, 9.494663490575910035621177927785, 9.969562582054726543474486278240

Graph of the $Z$-function along the critical line