L(s) = 1 | + (−0.149 + 0.125i)3-s + (2.90 + 1.05i)5-s + (0.434 + 0.158i)7-s + (−0.514 + 2.91i)9-s + (−1.13 + 1.96i)11-s + (0.321 + 1.82i)13-s + (−0.567 + 0.206i)15-s + (0.342 − 1.94i)17-s + (−1.00 + 0.840i)19-s + (−0.0848 + 0.0308i)21-s + (−0.276 − 0.478i)23-s + (3.49 + 2.93i)25-s + (−0.582 − 1.00i)27-s + (0.286 − 0.496i)29-s − 1.10·31-s + ⋯ |
L(s) = 1 | + (−0.0864 + 0.0725i)3-s + (1.29 + 0.473i)5-s + (0.164 + 0.0597i)7-s + (−0.171 + 0.972i)9-s + (−0.342 + 0.593i)11-s + (0.0892 + 0.506i)13-s + (−0.146 + 0.0533i)15-s + (0.0830 − 0.470i)17-s + (−0.229 + 0.192i)19-s + (−0.0185 + 0.00673i)21-s + (−0.0575 − 0.0997i)23-s + (0.699 + 0.586i)25-s + (−0.112 − 0.194i)27-s + (0.0532 − 0.0922i)29-s − 0.198·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.512 - 0.858i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.512 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.48271 + 0.841676i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.48271 + 0.841676i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + (-4.95 + 3.52i)T \) |
good | 3 | \( 1 + (0.149 - 0.125i)T + (0.520 - 2.95i)T^{2} \) |
| 5 | \( 1 + (-2.90 - 1.05i)T + (3.83 + 3.21i)T^{2} \) |
| 7 | \( 1 + (-0.434 - 0.158i)T + (5.36 + 4.49i)T^{2} \) |
| 11 | \( 1 + (1.13 - 1.96i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.321 - 1.82i)T + (-12.2 + 4.44i)T^{2} \) |
| 17 | \( 1 + (-0.342 + 1.94i)T + (-15.9 - 5.81i)T^{2} \) |
| 19 | \( 1 + (1.00 - 0.840i)T + (3.29 - 18.7i)T^{2} \) |
| 23 | \( 1 + (0.276 + 0.478i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.286 + 0.496i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.10T + 31T^{2} \) |
| 41 | \( 1 + (-0.616 - 3.49i)T + (-38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 - 5.87T + 43T^{2} \) |
| 47 | \( 1 + (-5.57 - 9.66i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.14 - 2.23i)T + (40.6 - 34.0i)T^{2} \) |
| 59 | \( 1 + (-11.5 + 4.22i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (1.07 + 6.07i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (-12.9 - 4.69i)T + (51.3 + 43.0i)T^{2} \) |
| 71 | \( 1 + (0.289 - 0.243i)T + (12.3 - 69.9i)T^{2} \) |
| 73 | \( 1 - 2.77T + 73T^{2} \) |
| 79 | \( 1 + (11.5 + 4.21i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (-2.17 + 12.3i)T + (-77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (-8.54 + 3.11i)T + (68.1 - 57.2i)T^{2} \) |
| 97 | \( 1 + (8.17 + 14.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76550368289984075457144172590, −9.934526404872984546457703967027, −9.340792723309739003430828152851, −8.146298221528434440483206064059, −7.21870331452715883888775443905, −6.20117615610610330455009569896, −5.38709415114114533633007130554, −4.42460233959924073745097379161, −2.68787678110805073760929701197, −1.87710647056624981133999695751,
1.03092173998373313570215561420, 2.48713848166033538338511448394, 3.81780978373814895454751845671, 5.26438949530023554687082348312, 5.88439211172962064877431789357, 6.71664284351635214954773767076, 8.061260812477573984891639778430, 8.900681430200718351863658051668, 9.630303300200111364955080510866, 10.44287909485693195408832038974