L(s) = 1 | + (−0.149 + 0.125i)3-s + (2.90 + 1.05i)5-s + (0.434 + 0.158i)7-s + (−0.514 + 2.91i)9-s + (−1.13 + 1.96i)11-s + (0.321 + 1.82i)13-s + (−0.567 + 0.206i)15-s + (0.342 − 1.94i)17-s + (−1.00 + 0.840i)19-s + (−0.0848 + 0.0308i)21-s + (−0.276 − 0.478i)23-s + (3.49 + 2.93i)25-s + (−0.582 − 1.00i)27-s + (0.286 − 0.496i)29-s − 1.10·31-s + ⋯ |
L(s) = 1 | + (−0.0864 + 0.0725i)3-s + (1.29 + 0.473i)5-s + (0.164 + 0.0597i)7-s + (−0.171 + 0.972i)9-s + (−0.342 + 0.593i)11-s + (0.0892 + 0.506i)13-s + (−0.146 + 0.0533i)15-s + (0.0830 − 0.470i)17-s + (−0.229 + 0.192i)19-s + (−0.0185 + 0.00673i)21-s + (−0.0575 − 0.0997i)23-s + (0.699 + 0.586i)25-s + (−0.112 − 0.194i)27-s + (0.0532 − 0.0922i)29-s − 0.198·31-s + ⋯ |
Λ(s)=(=(592s/2ΓC(s)L(s)(0.512−0.858i)Λ(2−s)
Λ(s)=(=(592s/2ΓC(s+1/2)L(s)(0.512−0.858i)Λ(1−s)
Degree: |
2 |
Conductor: |
592
= 24⋅37
|
Sign: |
0.512−0.858i
|
Analytic conductor: |
4.72714 |
Root analytic conductor: |
2.17419 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ592(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 592, ( :1/2), 0.512−0.858i)
|
Particular Values
L(1) |
≈ |
1.48271+0.841676i |
L(21) |
≈ |
1.48271+0.841676i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+(−4.95+3.52i)T |
good | 3 | 1+(0.149−0.125i)T+(0.520−2.95i)T2 |
| 5 | 1+(−2.90−1.05i)T+(3.83+3.21i)T2 |
| 7 | 1+(−0.434−0.158i)T+(5.36+4.49i)T2 |
| 11 | 1+(1.13−1.96i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.321−1.82i)T+(−12.2+4.44i)T2 |
| 17 | 1+(−0.342+1.94i)T+(−15.9−5.81i)T2 |
| 19 | 1+(1.00−0.840i)T+(3.29−18.7i)T2 |
| 23 | 1+(0.276+0.478i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−0.286+0.496i)T+(−14.5−25.1i)T2 |
| 31 | 1+1.10T+31T2 |
| 41 | 1+(−0.616−3.49i)T+(−38.5+14.0i)T2 |
| 43 | 1−5.87T+43T2 |
| 47 | 1+(−5.57−9.66i)T+(−23.5+40.7i)T2 |
| 53 | 1+(6.14−2.23i)T+(40.6−34.0i)T2 |
| 59 | 1+(−11.5+4.22i)T+(45.1−37.9i)T2 |
| 61 | 1+(1.07+6.07i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−12.9−4.69i)T+(51.3+43.0i)T2 |
| 71 | 1+(0.289−0.243i)T+(12.3−69.9i)T2 |
| 73 | 1−2.77T+73T2 |
| 79 | 1+(11.5+4.21i)T+(60.5+50.7i)T2 |
| 83 | 1+(−2.17+12.3i)T+(−77.9−28.3i)T2 |
| 89 | 1+(−8.54+3.11i)T+(68.1−57.2i)T2 |
| 97 | 1+(8.17+14.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76550368289984075457144172590, −9.934526404872984546457703967027, −9.340792723309739003430828152851, −8.146298221528434440483206064059, −7.21870331452715883888775443905, −6.20117615610610330455009569896, −5.38709415114114533633007130554, −4.42460233959924073745097379161, −2.68787678110805073760929701197, −1.87710647056624981133999695751,
1.03092173998373313570215561420, 2.48713848166033538338511448394, 3.81780978373814895454751845671, 5.26438949530023554687082348312, 5.88439211172962064877431789357, 6.71664284351635214954773767076, 8.061260812477573984891639778430, 8.900681430200718351863658051668, 9.630303300200111364955080510866, 10.44287909485693195408832038974