L(s) = 1 | + (0.260 + 1.47i)3-s + (−1.75 + 1.47i)5-s + (3.54 − 2.97i)7-s + (0.709 − 0.258i)9-s + (2.89 − 5.02i)11-s + (1.41 + 0.513i)13-s + (−2.62 − 2.20i)15-s + (−0.343 + 0.125i)17-s + (0.769 + 4.36i)19-s + (5.30 + 4.45i)21-s + (−1.15 − 1.99i)23-s + (0.0400 − 0.227i)25-s + (2.81 + 4.87i)27-s + (−1.46 + 2.53i)29-s − 0.428·31-s + ⋯ |
L(s) = 1 | + (0.150 + 0.851i)3-s + (−0.783 + 0.657i)5-s + (1.33 − 1.12i)7-s + (0.236 − 0.0860i)9-s + (0.874 − 1.51i)11-s + (0.391 + 0.142i)13-s + (−0.677 − 0.568i)15-s + (−0.0833 + 0.0303i)17-s + (0.176 + 1.00i)19-s + (1.15 + 0.971i)21-s + (−0.240 − 0.416i)23-s + (0.00800 − 0.0454i)25-s + (0.541 + 0.937i)27-s + (−0.271 + 0.470i)29-s − 0.0769·31-s + ⋯ |
Λ(s)=(=(592s/2ΓC(s)L(s)(0.886−0.462i)Λ(2−s)
Λ(s)=(=(592s/2ΓC(s+1/2)L(s)(0.886−0.462i)Λ(1−s)
Degree: |
2 |
Conductor: |
592
= 24⋅37
|
Sign: |
0.886−0.462i
|
Analytic conductor: |
4.72714 |
Root analytic conductor: |
2.17419 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ592(33,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 592, ( :1/2), 0.886−0.462i)
|
Particular Values
L(1) |
≈ |
1.65033+0.404710i |
L(21) |
≈ |
1.65033+0.404710i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+(3.07−5.24i)T |
good | 3 | 1+(−0.260−1.47i)T+(−2.81+1.02i)T2 |
| 5 | 1+(1.75−1.47i)T+(0.868−4.92i)T2 |
| 7 | 1+(−3.54+2.97i)T+(1.21−6.89i)T2 |
| 11 | 1+(−2.89+5.02i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−1.41−0.513i)T+(9.95+8.35i)T2 |
| 17 | 1+(0.343−0.125i)T+(13.0−10.9i)T2 |
| 19 | 1+(−0.769−4.36i)T+(−17.8+6.49i)T2 |
| 23 | 1+(1.15+1.99i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.46−2.53i)T+(−14.5−25.1i)T2 |
| 31 | 1+0.428T+31T2 |
| 41 | 1+(−0.112−0.0408i)T+(31.4+26.3i)T2 |
| 43 | 1−12.9T+43T2 |
| 47 | 1+(3.30+5.72i)T+(−23.5+40.7i)T2 |
| 53 | 1+(7.42+6.22i)T+(9.20+52.1i)T2 |
| 59 | 1+(6.22+5.22i)T+(10.2+58.1i)T2 |
| 61 | 1+(−2.40−0.874i)T+(46.7+39.2i)T2 |
| 67 | 1+(10.8−9.07i)T+(11.6−65.9i)T2 |
| 71 | 1+(1.40+7.98i)T+(−66.7+24.2i)T2 |
| 73 | 1−13.2T+73T2 |
| 79 | 1+(8.48−7.12i)T+(13.7−77.7i)T2 |
| 83 | 1+(−6.92+2.52i)T+(63.5−53.3i)T2 |
| 89 | 1+(−10.7−9.02i)T+(15.4+87.6i)T2 |
| 97 | 1+(2.83+4.90i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.96528262040743638331547300273, −10.10526800520036899401646909114, −8.918650728172382945064342775346, −8.123743462507701720131701681577, −7.33263322375550131581649491649, −6.28734287629448944066204213068, −4.90716536626528527290024752003, −3.83909386075898937713263385289, −3.56163704490602141431086063574, −1.27632098674875133389341141089,
1.37575179012117683143608810099, 2.29470563041123978010234298254, 4.26970399755972335178668226877, 4.84189077166854722393917075636, 6.13142598495861545794251354932, 7.41465163364718690344700095397, 7.77624822038151839828244989448, 8.799809107682927273142670497576, 9.401218492750010302869322535414, 10.89461186624953965378094864298