Properties

Label 2-592-37.10-c1-0-6
Degree 22
Conductor 592592
Sign 0.3510.936i-0.351 - 0.936i
Analytic cond. 4.727144.72714
Root an. cond. 2.174192.17419
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.42 + 2.47i)3-s + (0.5 + 0.866i)5-s + (2.07 + 3.59i)7-s + (−2.57 + 4.46i)9-s + 1.29·11-s + (−1.77 − 3.07i)13-s + (−1.42 + 2.47i)15-s + (1.79 − 3.11i)17-s + (−2.42 − 4.20i)19-s + (−5.93 + 10.2i)21-s − 5.01·23-s + (2 − 3.46i)25-s − 6.15·27-s + 8.86·29-s − 1.29·31-s + ⋯
L(s)  = 1  + (0.824 + 1.42i)3-s + (0.223 + 0.387i)5-s + (0.785 + 1.36i)7-s + (−0.859 + 1.48i)9-s + 0.391·11-s + (−0.493 − 0.854i)13-s + (−0.368 + 0.638i)15-s + (0.436 − 0.756i)17-s + (−0.556 − 0.964i)19-s + (−1.29 + 2.24i)21-s − 1.04·23-s + (0.400 − 0.692i)25-s − 1.18·27-s + 1.64·29-s − 0.233·31-s + ⋯

Functional equation

Λ(s)=(592s/2ΓC(s)L(s)=((0.3510.936i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.351 - 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(592s/2ΓC(s+1/2)L(s)=((0.3510.936i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.351 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 592592    =    24372^{4} \cdot 37
Sign: 0.3510.936i-0.351 - 0.936i
Analytic conductor: 4.727144.72714
Root analytic conductor: 2.174192.17419
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ592(417,)\chi_{592} (417, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 592, ( :1/2), 0.3510.936i)(2,\ 592,\ (\ :1/2),\ -0.351 - 0.936i)

Particular Values

L(1)L(1) \approx 1.19235+1.72060i1.19235 + 1.72060i
L(12)L(\frac12) \approx 1.19235+1.72060i1.19235 + 1.72060i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
37 1+(1.275.94i)T 1 + (-1.27 - 5.94i)T
good3 1+(1.422.47i)T+(1.5+2.59i)T2 1 + (-1.42 - 2.47i)T + (-1.5 + 2.59i)T^{2}
5 1+(0.50.866i)T+(2.5+4.33i)T2 1 + (-0.5 - 0.866i)T + (-2.5 + 4.33i)T^{2}
7 1+(2.073.59i)T+(3.5+6.06i)T2 1 + (-2.07 - 3.59i)T + (-3.5 + 6.06i)T^{2}
11 11.29T+11T2 1 - 1.29T + 11T^{2}
13 1+(1.77+3.07i)T+(6.5+11.2i)T2 1 + (1.77 + 3.07i)T + (-6.5 + 11.2i)T^{2}
17 1+(1.79+3.11i)T+(8.514.7i)T2 1 + (-1.79 + 3.11i)T + (-8.5 - 14.7i)T^{2}
19 1+(2.42+4.20i)T+(9.5+16.4i)T2 1 + (2.42 + 4.20i)T + (-9.5 + 16.4i)T^{2}
23 1+5.01T+23T2 1 + 5.01T + 23T^{2}
29 18.86T+29T2 1 - 8.86T + 29T^{2}
31 1+1.29T+31T2 1 + 1.29T + 31T^{2}
41 1+(5.35+9.27i)T+(20.5+35.5i)T2 1 + (5.35 + 9.27i)T + (-20.5 + 35.5i)T^{2}
43 110.3T+43T2 1 - 10.3T + 43T^{2}
47 1+8.72T+47T2 1 + 8.72T + 47T^{2}
53 1+(5.078.79i)T+(26.545.8i)T2 1 + (5.07 - 8.79i)T + (-26.5 - 45.8i)T^{2}
59 1+(4.638.02i)T+(29.551.0i)T2 1 + (4.63 - 8.02i)T + (-29.5 - 51.0i)T^{2}
61 1+(1.35+2.34i)T+(30.5+52.8i)T2 1 + (1.35 + 2.34i)T + (-30.5 + 52.8i)T^{2}
67 1+(3.986.90i)T+(33.5+58.0i)T2 1 + (-3.98 - 6.90i)T + (-33.5 + 58.0i)T^{2}
71 1+(5.63+9.75i)T+(35.5+61.4i)T2 1 + (5.63 + 9.75i)T + (-35.5 + 61.4i)T^{2}
73 12.28T+73T2 1 - 2.28T + 73T^{2}
79 1+(1.282.22i)T+(39.5+68.4i)T2 1 + (-1.28 - 2.22i)T + (-39.5 + 68.4i)T^{2}
83 1+(4.98+8.63i)T+(41.571.8i)T2 1 + (-4.98 + 8.63i)T + (-41.5 - 71.8i)T^{2}
89 1+(2.21+3.83i)T+(44.577.0i)T2 1 + (-2.21 + 3.83i)T + (-44.5 - 77.0i)T^{2}
97 19.97T+97T2 1 - 9.97T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.64318649045893529469991551252, −10.07713235562716485526000430116, −9.133865976650755534796313967330, −8.610629624651229127269198893667, −7.75762728759862591053324919541, −6.23384823992869851387126638886, −5.12469673524202706910202323513, −4.50572119382934479572862400354, −3.03603364640843091421160148765, −2.41405817902743444667782395391, 1.22648081865298083817727439610, 1.96239056929688746112637619044, 3.61563060868960577655738816220, 4.64485844093311378852595170605, 6.23401624028005900617997258215, 6.95046381897456845764862325495, 7.933432204206587579150097859101, 8.228838297027302533499265561570, 9.407615633945734516296008167737, 10.36989726183418301739795401546

Graph of the ZZ-function along the critical line