L(s) = 1 | + (1.42 + 2.47i)3-s + (0.5 + 0.866i)5-s + (2.07 + 3.59i)7-s + (−2.57 + 4.46i)9-s + 1.29·11-s + (−1.77 − 3.07i)13-s + (−1.42 + 2.47i)15-s + (1.79 − 3.11i)17-s + (−2.42 − 4.20i)19-s + (−5.93 + 10.2i)21-s − 5.01·23-s + (2 − 3.46i)25-s − 6.15·27-s + 8.86·29-s − 1.29·31-s + ⋯ |
L(s) = 1 | + (0.824 + 1.42i)3-s + (0.223 + 0.387i)5-s + (0.785 + 1.36i)7-s + (−0.859 + 1.48i)9-s + 0.391·11-s + (−0.493 − 0.854i)13-s + (−0.368 + 0.638i)15-s + (0.436 − 0.756i)17-s + (−0.556 − 0.964i)19-s + (−1.29 + 2.24i)21-s − 1.04·23-s + (0.400 − 0.692i)25-s − 1.18·27-s + 1.64·29-s − 0.233·31-s + ⋯ |
Λ(s)=(=(592s/2ΓC(s)L(s)(−0.351−0.936i)Λ(2−s)
Λ(s)=(=(592s/2ΓC(s+1/2)L(s)(−0.351−0.936i)Λ(1−s)
Degree: |
2 |
Conductor: |
592
= 24⋅37
|
Sign: |
−0.351−0.936i
|
Analytic conductor: |
4.72714 |
Root analytic conductor: |
2.17419 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ592(417,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 592, ( :1/2), −0.351−0.936i)
|
Particular Values
L(1) |
≈ |
1.19235+1.72060i |
L(21) |
≈ |
1.19235+1.72060i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+(−1.27−5.94i)T |
good | 3 | 1+(−1.42−2.47i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−0.5−0.866i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−2.07−3.59i)T+(−3.5+6.06i)T2 |
| 11 | 1−1.29T+11T2 |
| 13 | 1+(1.77+3.07i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−1.79+3.11i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.42+4.20i)T+(−9.5+16.4i)T2 |
| 23 | 1+5.01T+23T2 |
| 29 | 1−8.86T+29T2 |
| 31 | 1+1.29T+31T2 |
| 41 | 1+(5.35+9.27i)T+(−20.5+35.5i)T2 |
| 43 | 1−10.3T+43T2 |
| 47 | 1+8.72T+47T2 |
| 53 | 1+(5.07−8.79i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.63−8.02i)T+(−29.5−51.0i)T2 |
| 61 | 1+(1.35+2.34i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−3.98−6.90i)T+(−33.5+58.0i)T2 |
| 71 | 1+(5.63+9.75i)T+(−35.5+61.4i)T2 |
| 73 | 1−2.28T+73T2 |
| 79 | 1+(−1.28−2.22i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−4.98+8.63i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−2.21+3.83i)T+(−44.5−77.0i)T2 |
| 97 | 1−9.97T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64318649045893529469991551252, −10.07713235562716485526000430116, −9.133865976650755534796313967330, −8.610629624651229127269198893667, −7.75762728759862591053324919541, −6.23384823992869851387126638886, −5.12469673524202706910202323513, −4.50572119382934479572862400354, −3.03603364640843091421160148765, −2.41405817902743444667782395391,
1.22648081865298083817727439610, 1.96239056929688746112637619044, 3.61563060868960577655738816220, 4.64485844093311378852595170605, 6.23401624028005900617997258215, 6.95046381897456845764862325495, 7.933432204206587579150097859101, 8.228838297027302533499265561570, 9.407615633945734516296008167737, 10.36989726183418301739795401546