L(s) = 1 | − 2.64·3-s + (−1 + i)5-s − 2.64i·7-s + 4.00·9-s − 2.64·11-s + (−1 + i)13-s + (2.64 − 2.64i)15-s + (2 − 2i)17-s + 7.00i·21-s + (2.64 + 2.64i)23-s + 3i·25-s − 2.64·27-s + (7 + 7i)29-s + 7.00·33-s + (2.64 + 2.64i)35-s + ⋯ |
L(s) = 1 | − 1.52·3-s + (−0.447 + 0.447i)5-s − 0.999i·7-s + 1.33·9-s − 0.797·11-s + (−0.277 + 0.277i)13-s + (0.683 − 0.683i)15-s + (0.485 − 0.485i)17-s + 1.52i·21-s + (0.551 + 0.551i)23-s + 0.600i·25-s − 0.509·27-s + (1.29 + 1.29i)29-s + 1.21·33-s + (0.447 + 0.447i)35-s + ⋯ |
Λ(s)=(=(592s/2ΓC(s)L(s)(0.763−0.646i)Λ(2−s)
Λ(s)=(=(592s/2ΓC(s+1/2)L(s)(0.763−0.646i)Λ(1−s)
Degree: |
2 |
Conductor: |
592
= 24⋅37
|
Sign: |
0.763−0.646i
|
Analytic conductor: |
4.72714 |
Root analytic conductor: |
2.17419 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ592(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 592, ( :1/2), 0.763−0.646i)
|
Particular Values
L(1) |
≈ |
0.600498+0.220160i |
L(21) |
≈ |
0.600498+0.220160i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+(−1+6i)T |
good | 3 | 1+2.64T+3T2 |
| 5 | 1+(1−i)T−5iT2 |
| 7 | 1+2.64iT−7T2 |
| 11 | 1+2.64T+11T2 |
| 13 | 1+(1−i)T−13iT2 |
| 17 | 1+(−2+2i)T−17iT2 |
| 19 | 1+19iT2 |
| 23 | 1+(−2.64−2.64i)T+23iT2 |
| 29 | 1+(−7−7i)T+29iT2 |
| 31 | 1−31iT2 |
| 41 | 1−3iT−41T2 |
| 43 | 1+(−7.93−7.93i)T+43iT2 |
| 47 | 1−7.93iT−47T2 |
| 53 | 1−3T+53T2 |
| 59 | 1+(−5.29−5.29i)T+59iT2 |
| 61 | 1+(6+6i)T+61iT2 |
| 67 | 1+5.29T+67T2 |
| 71 | 1−2.64iT−71T2 |
| 73 | 1+15iT−73T2 |
| 79 | 1+(−5.29−5.29i)T+79iT2 |
| 83 | 1+13.2iT−83T2 |
| 89 | 1+(−4−4i)T+89iT2 |
| 97 | 1+(−6+6i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79647454982643989393612904684, −10.36735765566232031661927404125, −9.257896559051280656395406034196, −7.65744431100030758845054161817, −7.22408801751207204610309097889, −6.26169152924263748092345048178, −5.21615931314666885300694326619, −4.45823645112189294637637164889, −3.11597850888458860760440926805, −0.959187043391705670538466054835,
0.59510735106584512424673630890, 2.56104864384797019233987783835, 4.31131575419316987530905883747, 5.22275929305860832064320969445, 5.81569157495462038847668696402, 6.76774666521787070377219255644, 7.979843858296724315537815128746, 8.726665904173579082644473728943, 10.06494778022201382938784444349, 10.59305676990730435575837863332