L(s) = 1 | − 2.64·3-s + (−1 + i)5-s − 2.64i·7-s + 4.00·9-s − 2.64·11-s + (−1 + i)13-s + (2.64 − 2.64i)15-s + (2 − 2i)17-s + 7.00i·21-s + (2.64 + 2.64i)23-s + 3i·25-s − 2.64·27-s + (7 + 7i)29-s + 7.00·33-s + (2.64 + 2.64i)35-s + ⋯ |
L(s) = 1 | − 1.52·3-s + (−0.447 + 0.447i)5-s − 0.999i·7-s + 1.33·9-s − 0.797·11-s + (−0.277 + 0.277i)13-s + (0.683 − 0.683i)15-s + (0.485 − 0.485i)17-s + 1.52i·21-s + (0.551 + 0.551i)23-s + 0.600i·25-s − 0.509·27-s + (1.29 + 1.29i)29-s + 1.21·33-s + (0.447 + 0.447i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.763 - 0.646i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.763 - 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.600498 + 0.220160i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.600498 + 0.220160i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + (-1 + 6i)T \) |
good | 3 | \( 1 + 2.64T + 3T^{2} \) |
| 5 | \( 1 + (1 - i)T - 5iT^{2} \) |
| 7 | \( 1 + 2.64iT - 7T^{2} \) |
| 11 | \( 1 + 2.64T + 11T^{2} \) |
| 13 | \( 1 + (1 - i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2 + 2i)T - 17iT^{2} \) |
| 19 | \( 1 + 19iT^{2} \) |
| 23 | \( 1 + (-2.64 - 2.64i)T + 23iT^{2} \) |
| 29 | \( 1 + (-7 - 7i)T + 29iT^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 41 | \( 1 - 3iT - 41T^{2} \) |
| 43 | \( 1 + (-7.93 - 7.93i)T + 43iT^{2} \) |
| 47 | \( 1 - 7.93iT - 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (-5.29 - 5.29i)T + 59iT^{2} \) |
| 61 | \( 1 + (6 + 6i)T + 61iT^{2} \) |
| 67 | \( 1 + 5.29T + 67T^{2} \) |
| 71 | \( 1 - 2.64iT - 71T^{2} \) |
| 73 | \( 1 + 15iT - 73T^{2} \) |
| 79 | \( 1 + (-5.29 - 5.29i)T + 79iT^{2} \) |
| 83 | \( 1 + 13.2iT - 83T^{2} \) |
| 89 | \( 1 + (-4 - 4i)T + 89iT^{2} \) |
| 97 | \( 1 + (-6 + 6i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79647454982643989393612904684, −10.36735765566232031661927404125, −9.257896559051280656395406034196, −7.65744431100030758845054161817, −7.22408801751207204610309097889, −6.26169152924263748092345048178, −5.21615931314666885300694326619, −4.45823645112189294637637164889, −3.11597850888458860760440926805, −0.959187043391705670538466054835,
0.59510735106584512424673630890, 2.56104864384797019233987783835, 4.31131575419316987530905883747, 5.22275929305860832064320969445, 5.81569157495462038847668696402, 6.76774666521787070377219255644, 7.979843858296724315537815128746, 8.726665904173579082644473728943, 10.06494778022201382938784444349, 10.59305676990730435575837863332