L(s) = 1 | + (1.36 − 2.36i)3-s + (1.5 + 0.866i)5-s + (−1 + 1.73i)7-s + (−2.23 − 3.86i)9-s + 4.73·11-s + (−3 − 1.73i)13-s + (4.09 − 2.36i)15-s + (6.69 − 3.86i)17-s + (−1.09 − 0.633i)19-s + (2.73 + 4.73i)21-s − 4.73i·23-s + (−1 − 1.73i)25-s − 4.00·27-s + 8.66i·29-s + 1.26i·31-s + ⋯ |
L(s) = 1 | + (0.788 − 1.36i)3-s + (0.670 + 0.387i)5-s + (−0.377 + 0.654i)7-s + (−0.744 − 1.28i)9-s + 1.42·11-s + (−0.832 − 0.480i)13-s + (1.05 − 0.610i)15-s + (1.62 − 0.937i)17-s + (−0.251 − 0.145i)19-s + (0.596 + 1.03i)21-s − 0.986i·23-s + (−0.200 − 0.346i)25-s − 0.769·27-s + 1.60i·29-s + 0.227i·31-s + ⋯ |
Λ(s)=(=(592s/2ΓC(s)L(s)(0.443+0.896i)Λ(2−s)
Λ(s)=(=(592s/2ΓC(s+1/2)L(s)(0.443+0.896i)Λ(1−s)
Degree: |
2 |
Conductor: |
592
= 24⋅37
|
Sign: |
0.443+0.896i
|
Analytic conductor: |
4.72714 |
Root analytic conductor: |
2.17419 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ592(529,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 592, ( :1/2), 0.443+0.896i)
|
Particular Values
L(1) |
≈ |
1.80159−1.11879i |
L(21) |
≈ |
1.80159−1.11879i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+(5.69+2.13i)T |
good | 3 | 1+(−1.36+2.36i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−1.5−0.866i)T+(2.5+4.33i)T2 |
| 7 | 1+(1−1.73i)T+(−3.5−6.06i)T2 |
| 11 | 1−4.73T+11T2 |
| 13 | 1+(3+1.73i)T+(6.5+11.2i)T2 |
| 17 | 1+(−6.69+3.86i)T+(8.5−14.7i)T2 |
| 19 | 1+(1.09+0.633i)T+(9.5+16.4i)T2 |
| 23 | 1+4.73iT−23T2 |
| 29 | 1−8.66iT−29T2 |
| 31 | 1−1.26iT−31T2 |
| 41 | 1+(4.96−8.59i)T+(−20.5−35.5i)T2 |
| 43 | 1−0.928iT−43T2 |
| 47 | 1+4.73T+47T2 |
| 53 | 1+(1.26+2.19i)T+(−26.5+45.8i)T2 |
| 59 | 1+(2.19−1.26i)T+(29.5−51.0i)T2 |
| 61 | 1+(−1.5−0.866i)T+(30.5+52.8i)T2 |
| 67 | 1+(5.09−8.83i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−1.73+3i)T+(−35.5−61.4i)T2 |
| 73 | 1−4T+73T2 |
| 79 | 1+(−11.4−6.63i)T+(39.5+68.4i)T2 |
| 83 | 1+(2.83+4.90i)T+(−41.5+71.8i)T2 |
| 89 | 1+(5.89−3.40i)T+(44.5−77.0i)T2 |
| 97 | 1−7.73iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.32661883506719194998945843576, −9.473944582428718355912184372610, −8.768309892268009058682854905807, −7.80170950817519754081108825748, −6.86524692381338767908854037187, −6.35849650452927331400811528648, −5.18494800891820305635030744786, −3.28875383947870717323617446545, −2.52637846742919298994091458937, −1.31319466683809854682714035615,
1.75892190641303370850394615058, 3.48851058270205280070355394743, 3.97039160964177468677306455853, 5.11565785556131063390584949370, 6.16453483572719737902115581695, 7.41458148162080071685790421824, 8.494827002453309158329776665719, 9.423338255012495276513788957363, 9.785971265707106308953896654304, 10.37393098734813912151371848150