L(s) = 1 | + (1.36 − 2.36i)3-s + (1.5 + 0.866i)5-s + (−1 + 1.73i)7-s + (−2.23 − 3.86i)9-s + 4.73·11-s + (−3 − 1.73i)13-s + (4.09 − 2.36i)15-s + (6.69 − 3.86i)17-s + (−1.09 − 0.633i)19-s + (2.73 + 4.73i)21-s − 4.73i·23-s + (−1 − 1.73i)25-s − 4.00·27-s + 8.66i·29-s + 1.26i·31-s + ⋯ |
L(s) = 1 | + (0.788 − 1.36i)3-s + (0.670 + 0.387i)5-s + (−0.377 + 0.654i)7-s + (−0.744 − 1.28i)9-s + 1.42·11-s + (−0.832 − 0.480i)13-s + (1.05 − 0.610i)15-s + (1.62 − 0.937i)17-s + (−0.251 − 0.145i)19-s + (0.596 + 1.03i)21-s − 0.986i·23-s + (−0.200 − 0.346i)25-s − 0.769·27-s + 1.60i·29-s + 0.227i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.443 + 0.896i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.443 + 0.896i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.80159 - 1.11879i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.80159 - 1.11879i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + (5.69 + 2.13i)T \) |
good | 3 | \( 1 + (-1.36 + 2.36i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.5 - 0.866i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 - 4.73T + 11T^{2} \) |
| 13 | \( 1 + (3 + 1.73i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-6.69 + 3.86i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.09 + 0.633i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 4.73iT - 23T^{2} \) |
| 29 | \( 1 - 8.66iT - 29T^{2} \) |
| 31 | \( 1 - 1.26iT - 31T^{2} \) |
| 41 | \( 1 + (4.96 - 8.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 0.928iT - 43T^{2} \) |
| 47 | \( 1 + 4.73T + 47T^{2} \) |
| 53 | \( 1 + (1.26 + 2.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.19 - 1.26i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 0.866i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.09 - 8.83i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.73 + 3i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 4T + 73T^{2} \) |
| 79 | \( 1 + (-11.4 - 6.63i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.83 + 4.90i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (5.89 - 3.40i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 7.73iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32661883506719194998945843576, −9.473944582428718355912184372610, −8.768309892268009058682854905807, −7.80170950817519754081108825748, −6.86524692381338767908854037187, −6.35849650452927331400811528648, −5.18494800891820305635030744786, −3.28875383947870717323617446545, −2.52637846742919298994091458937, −1.31319466683809854682714035615,
1.75892190641303370850394615058, 3.48851058270205280070355394743, 3.97039160964177468677306455853, 5.11565785556131063390584949370, 6.16453483572719737902115581695, 7.41458148162080071685790421824, 8.494827002453309158329776665719, 9.423338255012495276513788957363, 9.785971265707106308953896654304, 10.37393098734813912151371848150