L(s) = 1 | − 1.87·2-s + 0.652·3-s + 1.53·4-s + 3.53·5-s − 1.22·6-s + 0.879·8-s − 2.57·9-s − 6.63·10-s + 12-s − 4.41·13-s + 2.30·15-s − 4.71·16-s + 5.24·17-s + 4.83·18-s − 1.81·19-s + 5.41·20-s − 6.33·23-s + 0.573·24-s + 7.47·25-s + 8.29·26-s − 3.63·27-s − 1.92·29-s − 4.33·30-s + 1.46·31-s + 7.10·32-s − 9.86·34-s − 3.94·36-s + ⋯ |
L(s) = 1 | − 1.32·2-s + 0.376·3-s + 0.766·4-s + 1.57·5-s − 0.500·6-s + 0.310·8-s − 0.857·9-s − 2.09·10-s + 0.288·12-s − 1.22·13-s + 0.595·15-s − 1.17·16-s + 1.27·17-s + 1.14·18-s − 0.416·19-s + 1.21·20-s − 1.32·23-s + 0.117·24-s + 1.49·25-s + 1.62·26-s − 0.700·27-s − 0.356·29-s − 0.791·30-s + 0.263·31-s + 1.25·32-s − 1.69·34-s − 0.657·36-s + ⋯ |
Λ(s)=(=(5929s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5929s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.195368221 |
L(21) |
≈ |
1.195368221 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 11 | 1 |
good | 2 | 1+1.87T+2T2 |
| 3 | 1−0.652T+3T2 |
| 5 | 1−3.53T+5T2 |
| 13 | 1+4.41T+13T2 |
| 17 | 1−5.24T+17T2 |
| 19 | 1+1.81T+19T2 |
| 23 | 1+6.33T+23T2 |
| 29 | 1+1.92T+29T2 |
| 31 | 1−1.46T+31T2 |
| 37 | 1−4.45T+37T2 |
| 41 | 1+0.283T+41T2 |
| 43 | 1−3.41T+43T2 |
| 47 | 1+4.55T+47T2 |
| 53 | 1+7.23T+53T2 |
| 59 | 1−9.53T+59T2 |
| 61 | 1−1.14T+61T2 |
| 67 | 1+0.694T+67T2 |
| 71 | 1−9.46T+71T2 |
| 73 | 1+2.34T+73T2 |
| 79 | 1−12.4T+79T2 |
| 83 | 1−11.3T+83T2 |
| 89 | 1+3.46T+89T2 |
| 97 | 1−15.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.079835112255427124009097962817, −7.77356511780602651213909592745, −6.79943295253231906256909164071, −6.03037587997585309496377109195, −5.43895345034856127105266532632, −4.59941758818199410289292186516, −3.29816500528366063744911202911, −2.26517481599899415457560392687, −1.95838985996695562947404658157, −0.67674583322847028935246894540,
0.67674583322847028935246894540, 1.95838985996695562947404658157, 2.26517481599899415457560392687, 3.29816500528366063744911202911, 4.59941758818199410289292186516, 5.43895345034856127105266532632, 6.03037587997585309496377109195, 6.79943295253231906256909164071, 7.77356511780602651213909592745, 8.079835112255427124009097962817