Properties

Label 2-6-1.1-c17-0-2
Degree $2$
Conductor $6$
Sign $-1$
Analytic cond. $10.9933$
Root an. cond. $3.31561$
Motivic weight $17$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 256·2-s − 6.56e3·3-s + 6.55e4·4-s + 6.45e5·5-s + 1.67e6·6-s + 3.97e6·7-s − 1.67e7·8-s + 4.30e7·9-s − 1.65e8·10-s − 5.00e8·11-s − 4.29e8·12-s − 5.42e9·13-s − 1.01e9·14-s − 4.23e9·15-s + 4.29e9·16-s − 5.46e9·17-s − 1.10e10·18-s − 5.38e10·19-s + 4.22e10·20-s − 2.60e10·21-s + 1.28e11·22-s + 5.78e11·23-s + 1.10e11·24-s − 3.46e11·25-s + 1.38e12·26-s − 2.82e11·27-s + 2.60e11·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.738·5-s + 0.408·6-s + 0.260·7-s − 0.353·8-s + 1/3·9-s − 0.522·10-s − 0.703·11-s − 0.288·12-s − 1.84·13-s − 0.184·14-s − 0.426·15-s + 1/4·16-s − 0.190·17-s − 0.235·18-s − 0.727·19-s + 0.369·20-s − 0.150·21-s + 0.497·22-s + 1.54·23-s + 0.204·24-s − 0.454·25-s + 1.30·26-s − 0.192·27-s + 0.130·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(18-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6 ^{s/2} \, \Gamma_{\C}(s+17/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6\)    =    \(2 \cdot 3\)
Sign: $-1$
Analytic conductor: \(10.9933\)
Root analytic conductor: \(3.31561\)
Motivic weight: \(17\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6,\ (\ :17/2),\ -1)\)

Particular Values

\(L(9)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{19}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{8} T \)
3 \( 1 + p^{8} T \)
good5 \( 1 - 25806 p^{2} T + p^{17} T^{2} \)
7 \( 1 - 567776 p T + p^{17} T^{2} \)
11 \( 1 + 45460788 p T + p^{17} T^{2} \)
13 \( 1 + 5425661314 T + p^{17} T^{2} \)
17 \( 1 + 5466992958 T + p^{17} T^{2} \)
19 \( 1 + 53889877060 T + p^{17} T^{2} \)
23 \( 1 - 578906836536 T + p^{17} T^{2} \)
29 \( 1 + 4619583681690 T + p^{17} T^{2} \)
31 \( 1 + 6802815567448 T + p^{17} T^{2} \)
37 \( 1 + 19571909422138 T + p^{17} T^{2} \)
41 \( 1 - 57213620756922 T + p^{17} T^{2} \)
43 \( 1 + 24501250225084 T + p^{17} T^{2} \)
47 \( 1 - 184283998832832 T + p^{17} T^{2} \)
53 \( 1 + 206542562280354 T + p^{17} T^{2} \)
59 \( 1 + 418648048246140 T + p^{17} T^{2} \)
61 \( 1 - 2501287878088382 T + p^{17} T^{2} \)
67 \( 1 + 145692866050948 T + p^{17} T^{2} \)
71 \( 1 + 5364313152664248 T + p^{17} T^{2} \)
73 \( 1 - 3302058927938186 T + p^{17} T^{2} \)
79 \( 1 - 22067463278260760 T + p^{17} T^{2} \)
83 \( 1 - 20438378406354876 T + p^{17} T^{2} \)
89 \( 1 + 56063805950152710 T + p^{17} T^{2} \)
97 \( 1 + 118254406396110718 T + p^{17} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.68693402654015723782842418374, −16.81530778009832749235234374319, −14.92857252611761500445607255585, −12.75190728140454758704120009201, −10.90766785822369459716757028814, −9.483467487472704116543893836061, −7.28870293225689242567611511459, −5.32472584341642081578733119505, −2.11022976097817694853914365166, 0, 2.11022976097817694853914365166, 5.32472584341642081578733119505, 7.28870293225689242567611511459, 9.483467487472704116543893836061, 10.90766785822369459716757028814, 12.75190728140454758704120009201, 14.92857252611761500445607255585, 16.81530778009832749235234374319, 17.68693402654015723782842418374

Graph of the $Z$-function along the critical line