L(s) = 1 | + (−1.24 − 0.671i)2-s − 3-s + (1.09 + 1.67i)4-s + (1.24 + 0.671i)6-s + 4.68i·7-s + (−0.244 − 2.81i)8-s + 9-s + 2.29i·11-s + (−1.09 − 1.67i)12-s − 4.97·13-s + (3.14 − 5.83i)14-s + (−1.58 + 3.67i)16-s − 2.97i·17-s + (−1.24 − 0.671i)18-s − 2.68i·19-s + ⋯ |
L(s) = 1 | + (−0.880 − 0.474i)2-s − 0.577·3-s + (0.549 + 0.835i)4-s + (0.508 + 0.274i)6-s + 1.77i·7-s + (−0.0864 − 0.996i)8-s + 0.333·9-s + 0.691i·11-s + (−0.317 − 0.482i)12-s − 1.38·13-s + (0.840 − 1.55i)14-s + (−0.396 + 0.917i)16-s − 0.722i·17-s + (−0.293 − 0.158i)18-s − 0.616i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.929 - 0.368i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.929 - 0.368i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0386860 + 0.202769i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0386860 + 0.202769i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.24 + 0.671i)T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 4.68iT - 7T^{2} \) |
| 11 | \( 1 - 2.29iT - 11T^{2} \) |
| 13 | \( 1 + 4.97T + 13T^{2} \) |
| 17 | \( 1 + 2.97iT - 17T^{2} \) |
| 19 | \( 1 + 2.68iT - 19T^{2} \) |
| 23 | \( 1 + 2.68iT - 23T^{2} \) |
| 29 | \( 1 + 2iT - 29T^{2} \) |
| 31 | \( 1 + 6.97T + 31T^{2} \) |
| 37 | \( 1 + 4.39T + 37T^{2} \) |
| 41 | \( 1 + 11.3T + 41T^{2} \) |
| 43 | \( 1 - 9.37T + 43T^{2} \) |
| 47 | \( 1 - 7.27iT - 47T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 + 1.70iT - 59T^{2} \) |
| 61 | \( 1 - 4.58iT - 61T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 - 0.585T + 71T^{2} \) |
| 73 | \( 1 - 6iT - 73T^{2} \) |
| 79 | \( 1 + 1.02T + 79T^{2} \) |
| 83 | \( 1 + 13.3T + 83T^{2} \) |
| 89 | \( 1 + 3.37T + 89T^{2} \) |
| 97 | \( 1 + 3.95iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11157654784755477245954175295, −10.02026040176976769975526345745, −9.380329199787679926697331365580, −8.706128994632291139668886243773, −7.53337282257966056634324225003, −6.77877885429962459328927523297, −5.57605520652319942218035698053, −4.63920355519819174369012170356, −2.84517853161744640264327861742, −2.02945077535826425175472285014,
0.15903604181634495935897673885, 1.59766349238880785080994304301, 3.61138327812209258684653296657, 4.89450136833995656433304553409, 5.88253842929194725291443068078, 7.02075718292190778703267685126, 7.40233120213116686245365138930, 8.393972131618795726704724514302, 9.600100498880543140923733283646, 10.33167703261758230817142898171