L(s) = 1 | + (−1.24 − 0.671i)2-s − 3-s + (1.09 + 1.67i)4-s + (1.24 + 0.671i)6-s + 4.68i·7-s + (−0.244 − 2.81i)8-s + 9-s + 2.29i·11-s + (−1.09 − 1.67i)12-s − 4.97·13-s + (3.14 − 5.83i)14-s + (−1.58 + 3.67i)16-s − 2.97i·17-s + (−1.24 − 0.671i)18-s − 2.68i·19-s + ⋯ |
L(s) = 1 | + (−0.880 − 0.474i)2-s − 0.577·3-s + (0.549 + 0.835i)4-s + (0.508 + 0.274i)6-s + 1.77i·7-s + (−0.0864 − 0.996i)8-s + 0.333·9-s + 0.691i·11-s + (−0.317 − 0.482i)12-s − 1.38·13-s + (0.840 − 1.55i)14-s + (−0.396 + 0.917i)16-s − 0.722i·17-s + (−0.293 − 0.158i)18-s − 0.616i·19-s + ⋯ |
Λ(s)=(=(600s/2ΓC(s)L(s)(−0.929−0.368i)Λ(2−s)
Λ(s)=(=(600s/2ΓC(s+1/2)L(s)(−0.929−0.368i)Λ(1−s)
Degree: |
2 |
Conductor: |
600
= 23⋅3⋅52
|
Sign: |
−0.929−0.368i
|
Analytic conductor: |
4.79102 |
Root analytic conductor: |
2.18884 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ600(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 600, ( :1/2), −0.929−0.368i)
|
Particular Values
L(1) |
≈ |
0.0386860+0.202769i |
L(21) |
≈ |
0.0386860+0.202769i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.24+0.671i)T |
| 3 | 1+T |
| 5 | 1 |
good | 7 | 1−4.68iT−7T2 |
| 11 | 1−2.29iT−11T2 |
| 13 | 1+4.97T+13T2 |
| 17 | 1+2.97iT−17T2 |
| 19 | 1+2.68iT−19T2 |
| 23 | 1+2.68iT−23T2 |
| 29 | 1+2iT−29T2 |
| 31 | 1+6.97T+31T2 |
| 37 | 1+4.39T+37T2 |
| 41 | 1+11.3T+41T2 |
| 43 | 1−9.37T+43T2 |
| 47 | 1−7.27iT−47T2 |
| 53 | 1+2T+53T2 |
| 59 | 1+1.70iT−59T2 |
| 61 | 1−4.58iT−61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1−0.585T+71T2 |
| 73 | 1−6iT−73T2 |
| 79 | 1+1.02T+79T2 |
| 83 | 1+13.3T+83T2 |
| 89 | 1+3.37T+89T2 |
| 97 | 1+3.95iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.11157654784755477245954175295, −10.02026040176976769975526345745, −9.380329199787679926697331365580, −8.706128994632291139668886243773, −7.53337282257966056634324225003, −6.77877885429962459328927523297, −5.57605520652319942218035698053, −4.63920355519819174369012170356, −2.84517853161744640264327861742, −2.02945077535826425175472285014,
0.15903604181634495935897673885, 1.59766349238880785080994304301, 3.61138327812209258684653296657, 4.89450136833995656433304553409, 5.88253842929194725291443068078, 7.02075718292190778703267685126, 7.40233120213116686245365138930, 8.393972131618795726704724514302, 9.600100498880543140923733283646, 10.33167703261758230817142898171