L(s) = 1 | + (−0.144 − 1.40i)2-s − 3-s + (−1.95 + 0.406i)4-s + (0.144 + 1.40i)6-s + 3.62i·7-s + (0.855 + 2.69i)8-s + 9-s − 6.20i·11-s + (1.95 − 0.406i)12-s − 0.578·13-s + (5.10 − 0.524i)14-s + (3.66 − 1.59i)16-s − 1.42i·17-s + (−0.144 − 1.40i)18-s − 5.62i·19-s + ⋯ |
L(s) = 1 | + (−0.102 − 0.994i)2-s − 0.577·3-s + (−0.979 + 0.203i)4-s + (0.0590 + 0.574i)6-s + 1.37i·7-s + (0.302 + 0.953i)8-s + 0.333·9-s − 1.87i·11-s + (0.565 − 0.117i)12-s − 0.160·13-s + (1.36 − 0.140i)14-s + (0.917 − 0.398i)16-s − 0.344i·17-s + (−0.0340 − 0.331i)18-s − 1.29i·19-s + ⋯ |
Λ(s)=(=(600s/2ΓC(s)L(s)(−0.717+0.696i)Λ(2−s)
Λ(s)=(=(600s/2ΓC(s+1/2)L(s)(−0.717+0.696i)Λ(1−s)
Degree: |
2 |
Conductor: |
600
= 23⋅3⋅52
|
Sign: |
−0.717+0.696i
|
Analytic conductor: |
4.79102 |
Root analytic conductor: |
2.18884 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ600(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 600, ( :1/2), −0.717+0.696i)
|
Particular Values
L(1) |
≈ |
0.300045−0.739497i |
L(21) |
≈ |
0.300045−0.739497i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.144+1.40i)T |
| 3 | 1+T |
| 5 | 1 |
good | 7 | 1−3.62iT−7T2 |
| 11 | 1+6.20iT−11T2 |
| 13 | 1+0.578T+13T2 |
| 17 | 1+1.42iT−17T2 |
| 19 | 1+5.62iT−19T2 |
| 23 | 1+5.62iT−23T2 |
| 29 | 1−2iT−29T2 |
| 31 | 1+2.57T+31T2 |
| 37 | 1−7.83T+37T2 |
| 41 | 1−5.25T+41T2 |
| 43 | 1+7.25T+43T2 |
| 47 | 1+6.78iT−47T2 |
| 53 | 1+2T+53T2 |
| 59 | 1+2.20iT−59T2 |
| 61 | 1+12.4iT−61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1−8.41T+71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1+5.42T+79T2 |
| 83 | 1−3.25T+83T2 |
| 89 | 1−13.2T+89T2 |
| 97 | 1+4.84iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64675645213611373785847268377, −9.409860630105957912173617213996, −8.836255929669702365732464080210, −8.070886150020945909963537640349, −6.46401306264438788070095442518, −5.55728717117692810265656600414, −4.77537189873276606493055123896, −3.29705382881241156709347973515, −2.37782268559277801117909772703, −0.54388433427110706472065004062,
1.41435310844905832860546651901, 3.93153066843160318929114544702, 4.51384057681432099411117707924, 5.62127773430141346814980798220, 6.64609790711730922408455178439, 7.45922572358450266777781150226, 7.85476970944891725221182309500, 9.473566897626017550280921785378, 9.967124015259165221254840775192, 10.68478174294418379747816060220