Properties

Label 2-600-40.29-c1-0-18
Degree $2$
Conductor $600$
Sign $-0.717 + 0.696i$
Analytic cond. $4.79102$
Root an. cond. $2.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.144 − 1.40i)2-s − 3-s + (−1.95 + 0.406i)4-s + (0.144 + 1.40i)6-s + 3.62i·7-s + (0.855 + 2.69i)8-s + 9-s − 6.20i·11-s + (1.95 − 0.406i)12-s − 0.578·13-s + (5.10 − 0.524i)14-s + (3.66 − 1.59i)16-s − 1.42i·17-s + (−0.144 − 1.40i)18-s − 5.62i·19-s + ⋯
L(s)  = 1  + (−0.102 − 0.994i)2-s − 0.577·3-s + (−0.979 + 0.203i)4-s + (0.0590 + 0.574i)6-s + 1.37i·7-s + (0.302 + 0.953i)8-s + 0.333·9-s − 1.87i·11-s + (0.565 − 0.117i)12-s − 0.160·13-s + (1.36 − 0.140i)14-s + (0.917 − 0.398i)16-s − 0.344i·17-s + (−0.0340 − 0.331i)18-s − 1.29i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.717 + 0.696i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.717 + 0.696i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $-0.717 + 0.696i$
Analytic conductor: \(4.79102\)
Root analytic conductor: \(2.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{600} (349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :1/2),\ -0.717 + 0.696i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.300045 - 0.739497i\)
\(L(\frac12)\) \(\approx\) \(0.300045 - 0.739497i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.144 + 1.40i)T \)
3 \( 1 + T \)
5 \( 1 \)
good7 \( 1 - 3.62iT - 7T^{2} \)
11 \( 1 + 6.20iT - 11T^{2} \)
13 \( 1 + 0.578T + 13T^{2} \)
17 \( 1 + 1.42iT - 17T^{2} \)
19 \( 1 + 5.62iT - 19T^{2} \)
23 \( 1 + 5.62iT - 23T^{2} \)
29 \( 1 - 2iT - 29T^{2} \)
31 \( 1 + 2.57T + 31T^{2} \)
37 \( 1 - 7.83T + 37T^{2} \)
41 \( 1 - 5.25T + 41T^{2} \)
43 \( 1 + 7.25T + 43T^{2} \)
47 \( 1 + 6.78iT - 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 + 2.20iT - 59T^{2} \)
61 \( 1 + 12.4iT - 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 - 8.41T + 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 + 5.42T + 79T^{2} \)
83 \( 1 - 3.25T + 83T^{2} \)
89 \( 1 - 13.2T + 89T^{2} \)
97 \( 1 + 4.84iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.64675645213611373785847268377, −9.409860630105957912173617213996, −8.836255929669702365732464080210, −8.070886150020945909963537640349, −6.46401306264438788070095442518, −5.55728717117692810265656600414, −4.77537189873276606493055123896, −3.29705382881241156709347973515, −2.37782268559277801117909772703, −0.54388433427110706472065004062, 1.41435310844905832860546651901, 3.93153066843160318929114544702, 4.51384057681432099411117707924, 5.62127773430141346814980798220, 6.64609790711730922408455178439, 7.45922572358450266777781150226, 7.85476970944891725221182309500, 9.473566897626017550280921785378, 9.967124015259165221254840775192, 10.68478174294418379747816060220

Graph of the $Z$-function along the critical line