Properties

Label 2-600-1.1-c5-0-23
Degree $2$
Conductor $600$
Sign $1$
Analytic cond. $96.2302$
Root an. cond. $9.80970$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 80·7-s + 81·9-s + 684·11-s + 978·13-s + 862·17-s + 916·19-s + 720·21-s + 1.55e3·23-s + 729·27-s − 7.31e3·29-s − 9.31e3·31-s + 6.15e3·33-s + 8.82e3·37-s + 8.80e3·39-s − 3.28e3·41-s − 7.55e3·43-s + 5.96e3·47-s − 1.04e4·49-s + 7.75e3·51-s + 8.69e3·53-s + 8.24e3·57-s − 4.20e4·59-s + 3.75e4·61-s + 6.48e3·63-s − 2.93e4·67-s + 1.39e4·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.617·7-s + 1/3·9-s + 1.70·11-s + 1.60·13-s + 0.723·17-s + 0.582·19-s + 0.356·21-s + 0.611·23-s + 0.192·27-s − 1.61·29-s − 1.74·31-s + 0.984·33-s + 1.05·37-s + 0.926·39-s − 0.305·41-s − 0.623·43-s + 0.393·47-s − 0.619·49-s + 0.417·51-s + 0.425·53-s + 0.336·57-s − 1.57·59-s + 1.29·61-s + 0.205·63-s − 0.798·67-s + 0.353·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(96.2302\)
Root analytic conductor: \(9.80970\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.018233145\)
\(L(\frac12)\) \(\approx\) \(4.018233145\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{2} T \)
5 \( 1 \)
good7 \( 1 - 80 T + p^{5} T^{2} \)
11 \( 1 - 684 T + p^{5} T^{2} \)
13 \( 1 - 978 T + p^{5} T^{2} \)
17 \( 1 - 862 T + p^{5} T^{2} \)
19 \( 1 - 916 T + p^{5} T^{2} \)
23 \( 1 - 1552 T + p^{5} T^{2} \)
29 \( 1 + 7314 T + p^{5} T^{2} \)
31 \( 1 + 9312 T + p^{5} T^{2} \)
37 \( 1 - 8826 T + p^{5} T^{2} \)
41 \( 1 + 3286 T + p^{5} T^{2} \)
43 \( 1 + 7556 T + p^{5} T^{2} \)
47 \( 1 - 5960 T + p^{5} T^{2} \)
53 \( 1 - 8698 T + p^{5} T^{2} \)
59 \( 1 + 42036 T + p^{5} T^{2} \)
61 \( 1 - 37518 T + p^{5} T^{2} \)
67 \( 1 + 29324 T + p^{5} T^{2} \)
71 \( 1 - 84408 T + p^{5} T^{2} \)
73 \( 1 - 46550 T + p^{5} T^{2} \)
79 \( 1 - 26752 T + p^{5} T^{2} \)
83 \( 1 - 7956 T + p^{5} T^{2} \)
89 \( 1 - 59674 T + p^{5} T^{2} \)
97 \( 1 + 136898 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.561837485842592351015719079478, −9.083783281079767277602859281337, −8.209718034351718817922422889662, −7.31411826938067185819851643395, −6.32692849030153219449589783202, −5.32694473408731700339080377970, −3.93610865555768492360179681899, −3.45598110410793175982515838798, −1.75984338237498964797833473259, −1.07593525641134169258923820977, 1.07593525641134169258923820977, 1.75984338237498964797833473259, 3.45598110410793175982515838798, 3.93610865555768492360179681899, 5.32694473408731700339080377970, 6.32692849030153219449589783202, 7.31411826938067185819851643395, 8.209718034351718817922422889662, 9.083783281079767277602859281337, 9.561837485842592351015719079478

Graph of the $Z$-function along the critical line