L(s) = 1 | + 9·3-s + 80·7-s + 81·9-s + 684·11-s + 978·13-s + 862·17-s + 916·19-s + 720·21-s + 1.55e3·23-s + 729·27-s − 7.31e3·29-s − 9.31e3·31-s + 6.15e3·33-s + 8.82e3·37-s + 8.80e3·39-s − 3.28e3·41-s − 7.55e3·43-s + 5.96e3·47-s − 1.04e4·49-s + 7.75e3·51-s + 8.69e3·53-s + 8.24e3·57-s − 4.20e4·59-s + 3.75e4·61-s + 6.48e3·63-s − 2.93e4·67-s + 1.39e4·69-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.617·7-s + 1/3·9-s + 1.70·11-s + 1.60·13-s + 0.723·17-s + 0.582·19-s + 0.356·21-s + 0.611·23-s + 0.192·27-s − 1.61·29-s − 1.74·31-s + 0.984·33-s + 1.05·37-s + 0.926·39-s − 0.305·41-s − 0.623·43-s + 0.393·47-s − 0.619·49-s + 0.417·51-s + 0.425·53-s + 0.336·57-s − 1.57·59-s + 1.29·61-s + 0.205·63-s − 0.798·67-s + 0.353·69-s + ⋯ |
Λ(s)=(=(600s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(600s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
4.018233145 |
L(21) |
≈ |
4.018233145 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−p2T |
| 5 | 1 |
good | 7 | 1−80T+p5T2 |
| 11 | 1−684T+p5T2 |
| 13 | 1−978T+p5T2 |
| 17 | 1−862T+p5T2 |
| 19 | 1−916T+p5T2 |
| 23 | 1−1552T+p5T2 |
| 29 | 1+7314T+p5T2 |
| 31 | 1+9312T+p5T2 |
| 37 | 1−8826T+p5T2 |
| 41 | 1+3286T+p5T2 |
| 43 | 1+7556T+p5T2 |
| 47 | 1−5960T+p5T2 |
| 53 | 1−8698T+p5T2 |
| 59 | 1+42036T+p5T2 |
| 61 | 1−37518T+p5T2 |
| 67 | 1+29324T+p5T2 |
| 71 | 1−84408T+p5T2 |
| 73 | 1−46550T+p5T2 |
| 79 | 1−26752T+p5T2 |
| 83 | 1−7956T+p5T2 |
| 89 | 1−59674T+p5T2 |
| 97 | 1+136898T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.561837485842592351015719079478, −9.083783281079767277602859281337, −8.209718034351718817922422889662, −7.31411826938067185819851643395, −6.32692849030153219449589783202, −5.32694473408731700339080377970, −3.93610865555768492360179681899, −3.45598110410793175982515838798, −1.75984338237498964797833473259, −1.07593525641134169258923820977,
1.07593525641134169258923820977, 1.75984338237498964797833473259, 3.45598110410793175982515838798, 3.93610865555768492360179681899, 5.32694473408731700339080377970, 6.32692849030153219449589783202, 7.31411826938067185819851643395, 8.209718034351718817922422889662, 9.083783281079767277602859281337, 9.561837485842592351015719079478