L(s) = 1 | + (0.345 − 0.345i)2-s + (−0.805 + 0.805i)3-s + 1.76i·4-s + (−2.18 − 0.490i)5-s + 0.556i·6-s + (2.06 − 2.06i)7-s + (1.29 + 1.29i)8-s + 1.70i·9-s + (−0.922 + 0.583i)10-s + (−1.41 − 1.41i)12-s + (2.06 + 2.06i)13-s − 1.42i·14-s + (2.15 − 1.36i)15-s − 2.62·16-s + (−3.72 + 3.72i)17-s + (0.587 + 0.587i)18-s + ⋯ |
L(s) = 1 | + (0.244 − 0.244i)2-s + (−0.465 + 0.465i)3-s + 0.880i·4-s + (−0.975 − 0.219i)5-s + 0.227i·6-s + (0.779 − 0.779i)7-s + (0.459 + 0.459i)8-s + 0.567i·9-s + (−0.291 + 0.184i)10-s + (−0.409 − 0.409i)12-s + (0.573 + 0.573i)13-s − 0.380i·14-s + (0.555 − 0.351i)15-s − 0.656·16-s + (−0.903 + 0.903i)17-s + (0.138 + 0.138i)18-s + ⋯ |
Λ(s)=(=(605s/2ΓC(s)L(s)(−0.655−0.755i)Λ(2−s)
Λ(s)=(=(605s/2ΓC(s+1/2)L(s)(−0.655−0.755i)Λ(1−s)
Degree: |
2 |
Conductor: |
605
= 5⋅112
|
Sign: |
−0.655−0.755i
|
Analytic conductor: |
4.83094 |
Root analytic conductor: |
2.19794 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ605(362,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 605, ( :1/2), −0.655−0.755i)
|
Particular Values
L(1) |
≈ |
0.364032+0.797404i |
L(21) |
≈ |
0.364032+0.797404i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.18+0.490i)T |
| 11 | 1 |
good | 2 | 1+(−0.345+0.345i)T−2iT2 |
| 3 | 1+(0.805−0.805i)T−3iT2 |
| 7 | 1+(−2.06+2.06i)T−7iT2 |
| 13 | 1+(−2.06−2.06i)T+13iT2 |
| 17 | 1+(3.72−3.72i)T−17iT2 |
| 19 | 1+4.09T+19T2 |
| 23 | 1+(2.12−2.12i)T−23iT2 |
| 29 | 1+2.64T+29T2 |
| 31 | 1+6.74T+31T2 |
| 37 | 1+(−0.822−0.822i)T+37iT2 |
| 41 | 1−3.55iT−41T2 |
| 43 | 1+(−5.07−5.07i)T+43iT2 |
| 47 | 1+(2.60+2.60i)T+47iT2 |
| 53 | 1+(−1.04+1.04i)T−53iT2 |
| 59 | 1−1.60iT−59T2 |
| 61 | 1+6.93iT−61T2 |
| 67 | 1+(−1.31−1.31i)T+67iT2 |
| 71 | 1−2.87T+71T2 |
| 73 | 1+(−10.4−10.4i)T+73iT2 |
| 79 | 1−15.2T+79T2 |
| 83 | 1+(−4.72−4.72i)T+83iT2 |
| 89 | 1+11.1iT−89T2 |
| 97 | 1+(−7.11−7.11i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.16247786154390228439797232509, −10.59649942366885964335123782065, −9.064511470387725263174932623561, −8.135044764775652018507409941513, −7.70361167023791057737059564687, −6.57407986342850975244092189770, −5.04031093887339567003333847054, −4.19123476431040735639791759086, −3.82108409522325554337362881181, −1.96113431573570686827673205155,
0.47036276895506745524001796732, 2.10684142602976516850681637972, 3.83705277468178342951083421130, 4.91283063382061315906858942745, 5.82037488788201848144557793730, 6.63196658234919471653227618797, 7.47213751918136902259537620822, 8.579245430091363723070319941616, 9.316211775566107937910359139178, 10.79590774757326125355467316973