L(s) = 1 | + (0.345 − 0.345i)2-s + (−0.805 + 0.805i)3-s + 1.76i·4-s + (−2.18 − 0.490i)5-s + 0.556i·6-s + (2.06 − 2.06i)7-s + (1.29 + 1.29i)8-s + 1.70i·9-s + (−0.922 + 0.583i)10-s + (−1.41 − 1.41i)12-s + (2.06 + 2.06i)13-s − 1.42i·14-s + (2.15 − 1.36i)15-s − 2.62·16-s + (−3.72 + 3.72i)17-s + (0.587 + 0.587i)18-s + ⋯ |
L(s) = 1 | + (0.244 − 0.244i)2-s + (−0.465 + 0.465i)3-s + 0.880i·4-s + (−0.975 − 0.219i)5-s + 0.227i·6-s + (0.779 − 0.779i)7-s + (0.459 + 0.459i)8-s + 0.567i·9-s + (−0.291 + 0.184i)10-s + (−0.409 − 0.409i)12-s + (0.573 + 0.573i)13-s − 0.380i·14-s + (0.555 − 0.351i)15-s − 0.656·16-s + (−0.903 + 0.903i)17-s + (0.138 + 0.138i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.655 - 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.655 - 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.364032 + 0.797404i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.364032 + 0.797404i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.18 + 0.490i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.345 + 0.345i)T - 2iT^{2} \) |
| 3 | \( 1 + (0.805 - 0.805i)T - 3iT^{2} \) |
| 7 | \( 1 + (-2.06 + 2.06i)T - 7iT^{2} \) |
| 13 | \( 1 + (-2.06 - 2.06i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.72 - 3.72i)T - 17iT^{2} \) |
| 19 | \( 1 + 4.09T + 19T^{2} \) |
| 23 | \( 1 + (2.12 - 2.12i)T - 23iT^{2} \) |
| 29 | \( 1 + 2.64T + 29T^{2} \) |
| 31 | \( 1 + 6.74T + 31T^{2} \) |
| 37 | \( 1 + (-0.822 - 0.822i)T + 37iT^{2} \) |
| 41 | \( 1 - 3.55iT - 41T^{2} \) |
| 43 | \( 1 + (-5.07 - 5.07i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.60 + 2.60i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1.04 + 1.04i)T - 53iT^{2} \) |
| 59 | \( 1 - 1.60iT - 59T^{2} \) |
| 61 | \( 1 + 6.93iT - 61T^{2} \) |
| 67 | \( 1 + (-1.31 - 1.31i)T + 67iT^{2} \) |
| 71 | \( 1 - 2.87T + 71T^{2} \) |
| 73 | \( 1 + (-10.4 - 10.4i)T + 73iT^{2} \) |
| 79 | \( 1 - 15.2T + 79T^{2} \) |
| 83 | \( 1 + (-4.72 - 4.72i)T + 83iT^{2} \) |
| 89 | \( 1 + 11.1iT - 89T^{2} \) |
| 97 | \( 1 + (-7.11 - 7.11i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16247786154390228439797232509, −10.59649942366885964335123782065, −9.064511470387725263174932623561, −8.135044764775652018507409941513, −7.70361167023791057737059564687, −6.57407986342850975244092189770, −5.04031093887339567003333847054, −4.19123476431040735639791759086, −3.82108409522325554337362881181, −1.96113431573570686827673205155,
0.47036276895506745524001796732, 2.10684142602976516850681637972, 3.83705277468178342951083421130, 4.91283063382061315906858942745, 5.82037488788201848144557793730, 6.63196658234919471653227618797, 7.47213751918136902259537620822, 8.579245430091363723070319941616, 9.316211775566107937910359139178, 10.79590774757326125355467316973