Properties

Label 2-6050-1.1-c1-0-59
Degree $2$
Conductor $6050$
Sign $1$
Analytic cond. $48.3094$
Root an. cond. $6.95050$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s − 2·7-s + 8-s − 2·9-s + 12-s + 4·13-s − 2·14-s + 16-s + 3·17-s − 2·18-s − 5·19-s − 2·21-s + 6·23-s + 24-s + 4·26-s − 5·27-s − 2·28-s + 2·31-s + 32-s + 3·34-s − 2·36-s + 2·37-s − 5·38-s + 4·39-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.755·7-s + 0.353·8-s − 2/3·9-s + 0.288·12-s + 1.10·13-s − 0.534·14-s + 1/4·16-s + 0.727·17-s − 0.471·18-s − 1.14·19-s − 0.436·21-s + 1.25·23-s + 0.204·24-s + 0.784·26-s − 0.962·27-s − 0.377·28-s + 0.359·31-s + 0.176·32-s + 0.514·34-s − 1/3·36-s + 0.328·37-s − 0.811·38-s + 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6050\)    =    \(2 \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(48.3094\)
Root analytic conductor: \(6.95050\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6050,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.612648758\)
\(L(\frac12)\) \(\approx\) \(3.612648758\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 13 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 - 15 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.003379760199122716602575955438, −7.37355750361837418705145948004, −6.39299024601606568879362228127, −6.05410683290230188214573869250, −5.25591445959428735491861815623, −4.25751151289549141315285174849, −3.54905277576412147109484999920, −2.96421704926700326951259240062, −2.18944587268591749591824641427, −0.870527168442070003633023384518, 0.870527168442070003633023384518, 2.18944587268591749591824641427, 2.96421704926700326951259240062, 3.54905277576412147109484999920, 4.25751151289549141315285174849, 5.25591445959428735491861815623, 6.05410683290230188214573869250, 6.39299024601606568879362228127, 7.37355750361837418705145948004, 8.003379760199122716602575955438

Graph of the $Z$-function along the critical line