L(s) = 1 | − 5-s − 7-s − 3·9-s + 3·11-s − 4·13-s − 3·17-s + 19-s − 8·23-s − 4·25-s + 2·31-s + 35-s − 8·37-s + 11·43-s + 3·45-s − 7·47-s − 6·49-s + 2·53-s − 3·55-s + 6·59-s − 61-s + 3·63-s + 4·65-s − 10·67-s + 2·71-s + 5·73-s − 3·77-s − 2·79-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.377·7-s − 9-s + 0.904·11-s − 1.10·13-s − 0.727·17-s + 0.229·19-s − 1.66·23-s − 4/5·25-s + 0.359·31-s + 0.169·35-s − 1.31·37-s + 1.67·43-s + 0.447·45-s − 1.02·47-s − 6/7·49-s + 0.274·53-s − 0.404·55-s + 0.781·59-s − 0.128·61-s + 0.377·63-s + 0.496·65-s − 1.22·67-s + 0.237·71-s + 0.585·73-s − 0.341·77-s − 0.225·79-s + ⋯ |
Λ(s)=(=(608s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(608s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1−T |
good | 3 | 1+pT2 |
| 5 | 1+T+pT2 |
| 7 | 1+T+pT2 |
| 11 | 1−3T+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1+3T+pT2 |
| 23 | 1+8T+pT2 |
| 29 | 1+pT2 |
| 31 | 1−2T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−11T+pT2 |
| 47 | 1+7T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1+T+pT2 |
| 67 | 1+10T+pT2 |
| 71 | 1−2T+pT2 |
| 73 | 1−5T+pT2 |
| 79 | 1+2T+pT2 |
| 83 | 1+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+12T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.11217440262524272793966315283, −9.356073062840077109182609673978, −8.467317306890464867116303654123, −7.59019329531238695962577712799, −6.57705024982005416568601729042, −5.71435981136868716408885186688, −4.47863079866238157165170735095, −3.47456597646201355004490006149, −2.19568966813265176024980758112, 0,
2.19568966813265176024980758112, 3.47456597646201355004490006149, 4.47863079866238157165170735095, 5.71435981136868716408885186688, 6.57705024982005416568601729042, 7.59019329531238695962577712799, 8.467317306890464867116303654123, 9.356073062840077109182609673978, 10.11217440262524272793966315283