Properties

Label 2-6080-1.1-c1-0-63
Degree $2$
Conductor $6080$
Sign $1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.70·3-s − 5-s + 1.07·7-s − 0.0783·9-s + 6.34·11-s − 1.36·13-s − 1.70·15-s + 3.26·17-s + 19-s + 1.84·21-s + 2.34·23-s + 25-s − 5.26·27-s − 1.41·29-s + 8.68·31-s + 10.8·33-s − 1.07·35-s − 5.36·37-s − 2.34·39-s − 3.26·41-s + 11.9·43-s + 0.0783·45-s + 1.07·47-s − 5.83·49-s + 5.57·51-s − 6.63·53-s − 6.34·55-s + ⋯
L(s)  = 1  + 0.986·3-s − 0.447·5-s + 0.407·7-s − 0.0261·9-s + 1.91·11-s − 0.379·13-s − 0.441·15-s + 0.791·17-s + 0.229·19-s + 0.402·21-s + 0.487·23-s + 0.200·25-s − 1.01·27-s − 0.263·29-s + 1.55·31-s + 1.88·33-s − 0.182·35-s − 0.882·37-s − 0.374·39-s − 0.509·41-s + 1.81·43-s + 0.0116·45-s + 0.157·47-s − 0.833·49-s + 0.780·51-s − 0.910·53-s − 0.854·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.190546810\)
\(L(\frac12)\) \(\approx\) \(3.190546810\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 - 1.70T + 3T^{2} \)
7 \( 1 - 1.07T + 7T^{2} \)
11 \( 1 - 6.34T + 11T^{2} \)
13 \( 1 + 1.36T + 13T^{2} \)
17 \( 1 - 3.26T + 17T^{2} \)
23 \( 1 - 2.34T + 23T^{2} \)
29 \( 1 + 1.41T + 29T^{2} \)
31 \( 1 - 8.68T + 31T^{2} \)
37 \( 1 + 5.36T + 37T^{2} \)
41 \( 1 + 3.26T + 41T^{2} \)
43 \( 1 - 11.9T + 43T^{2} \)
47 \( 1 - 1.07T + 47T^{2} \)
53 \( 1 + 6.63T + 53T^{2} \)
59 \( 1 - 11.4T + 59T^{2} \)
61 \( 1 + 5.60T + 61T^{2} \)
67 \( 1 + 10.3T + 67T^{2} \)
71 \( 1 + 10.8T + 71T^{2} \)
73 \( 1 - 5.41T + 73T^{2} \)
79 \( 1 - 14.2T + 79T^{2} \)
83 \( 1 - 14.3T + 83T^{2} \)
89 \( 1 - 7.57T + 89T^{2} \)
97 \( 1 + 8.88T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.031201752859126709751571000615, −7.57505647244556419398207936084, −6.75450169897485731456734052478, −6.06301198362251480914564588897, −5.05649981675011047329186520020, −4.25057297225603583166829022521, −3.56166234525666090577479081580, −2.93754938932337333745231990309, −1.86845338255902450262087323752, −0.943905656815419212911465325535, 0.943905656815419212911465325535, 1.86845338255902450262087323752, 2.93754938932337333745231990309, 3.56166234525666090577479081580, 4.25057297225603583166829022521, 5.05649981675011047329186520020, 6.06301198362251480914564588897, 6.75450169897485731456734052478, 7.57505647244556419398207936084, 8.031201752859126709751571000615

Graph of the $Z$-function along the critical line