Properties

Label 2-6080-1.1-c1-0-125
Degree $2$
Conductor $6080$
Sign $-1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.363·3-s + 5-s + 1.14·7-s − 2.86·9-s + 2.72·11-s + 4.64·13-s − 0.363·15-s − 0.858·17-s + 19-s − 0.414·21-s − 4.41·23-s + 25-s + 2.13·27-s − 9.42·29-s − 10.2·31-s − 0.990·33-s + 1.14·35-s − 6.77·37-s − 1.68·39-s − 7.55·41-s − 9.29·43-s − 2.86·45-s − 7.00·47-s − 5.69·49-s + 0.311·51-s + 8.64·53-s + 2.72·55-s + ⋯
L(s)  = 1  − 0.209·3-s + 0.447·5-s + 0.431·7-s − 0.955·9-s + 0.822·11-s + 1.28·13-s − 0.0938·15-s − 0.208·17-s + 0.229·19-s − 0.0904·21-s − 0.920·23-s + 0.200·25-s + 0.410·27-s − 1.74·29-s − 1.84·31-s − 0.172·33-s + 0.192·35-s − 1.11·37-s − 0.270·39-s − 1.18·41-s − 1.41·43-s − 0.427·45-s − 1.02·47-s − 0.813·49-s + 0.0436·51-s + 1.18·53-s + 0.367·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good3 \( 1 + 0.363T + 3T^{2} \)
7 \( 1 - 1.14T + 7T^{2} \)
11 \( 1 - 2.72T + 11T^{2} \)
13 \( 1 - 4.64T + 13T^{2} \)
17 \( 1 + 0.858T + 17T^{2} \)
23 \( 1 + 4.41T + 23T^{2} \)
29 \( 1 + 9.42T + 29T^{2} \)
31 \( 1 + 10.2T + 31T^{2} \)
37 \( 1 + 6.77T + 37T^{2} \)
41 \( 1 + 7.55T + 41T^{2} \)
43 \( 1 + 9.29T + 43T^{2} \)
47 \( 1 + 7.00T + 47T^{2} \)
53 \( 1 - 8.64T + 53T^{2} \)
59 \( 1 - 5.14T + 59T^{2} \)
61 \( 1 + 9.45T + 61T^{2} \)
67 \( 1 - 13.6T + 67T^{2} \)
71 \( 1 + 5.45T + 71T^{2} \)
73 \( 1 - 6.87T + 73T^{2} \)
79 \( 1 - 17.2T + 79T^{2} \)
83 \( 1 - 14.2T + 83T^{2} \)
89 \( 1 - 13.0T + 89T^{2} \)
97 \( 1 + 9.68T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87270129727688944758700235382, −6.76684722309831822261039085319, −6.35853596950906893728038046750, −5.45375040615467000731482052324, −5.15537733291499276353110320862, −3.69529749710956694616550375844, −3.57062490493024392806131864100, −2.06967286944176635128132144271, −1.49394789684704662201917514645, 0, 1.49394789684704662201917514645, 2.06967286944176635128132144271, 3.57062490493024392806131864100, 3.69529749710956694616550375844, 5.15537733291499276353110320862, 5.45375040615467000731482052324, 6.35853596950906893728038046750, 6.76684722309831822261039085319, 7.87270129727688944758700235382

Graph of the $Z$-function along the critical line