L(s) = 1 | + 2·3-s − 5-s − 4·7-s + 9-s − 4·11-s − 2·15-s + 6·17-s − 19-s − 8·21-s − 8·23-s + 25-s − 4·27-s + 6·29-s + 8·31-s − 8·33-s + 4·35-s + 8·37-s − 2·41-s − 45-s − 12·47-s + 9·49-s + 12·51-s − 4·53-s + 4·55-s − 2·57-s + 8·59-s + 14·61-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 1.20·11-s − 0.516·15-s + 1.45·17-s − 0.229·19-s − 1.74·21-s − 1.66·23-s + 1/5·25-s − 0.769·27-s + 1.11·29-s + 1.43·31-s − 1.39·33-s + 0.676·35-s + 1.31·37-s − 0.312·41-s − 0.149·45-s − 1.75·47-s + 9/7·49-s + 1.68·51-s − 0.549·53-s + 0.539·55-s − 0.264·57-s + 1.04·59-s + 1.79·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.673415293\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.673415293\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 - 2 T + p T^{2} \) |
| 7 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + p T^{2} \) |
| 47 | \( 1 + 12 T + p T^{2} \) |
| 53 | \( 1 + 4 T + p T^{2} \) |
| 59 | \( 1 - 8 T + p T^{2} \) |
| 61 | \( 1 - 14 T + p T^{2} \) |
| 67 | \( 1 + 2 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 + 4 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.002145793349034303386882789385, −7.74206895127479604135859330168, −6.64159139979810876027460977242, −6.09050200317240069522502521420, −5.19910910847363332156501483830, −4.16104953155253670272146072421, −3.37483914573339538706864448662, −2.94207105490551775645458620008, −2.21972199427398646415186339445, −0.60473382774498273174936177378,
0.60473382774498273174936177378, 2.21972199427398646415186339445, 2.94207105490551775645458620008, 3.37483914573339538706864448662, 4.16104953155253670272146072421, 5.19910910847363332156501483830, 6.09050200317240069522502521420, 6.64159139979810876027460977242, 7.74206895127479604135859330168, 8.002145793349034303386882789385