Properties

Label 2-6080-1.1-c1-0-19
Degree $2$
Conductor $6080$
Sign $1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 4·7-s + 9-s − 4·11-s − 2·15-s + 6·17-s − 19-s − 8·21-s − 8·23-s + 25-s − 4·27-s + 6·29-s + 8·31-s − 8·33-s + 4·35-s + 8·37-s − 2·41-s − 45-s − 12·47-s + 9·49-s + 12·51-s − 4·53-s + 4·55-s − 2·57-s + 8·59-s + 14·61-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 1.20·11-s − 0.516·15-s + 1.45·17-s − 0.229·19-s − 1.74·21-s − 1.66·23-s + 1/5·25-s − 0.769·27-s + 1.11·29-s + 1.43·31-s − 1.39·33-s + 0.676·35-s + 1.31·37-s − 0.312·41-s − 0.149·45-s − 1.75·47-s + 9/7·49-s + 1.68·51-s − 0.549·53-s + 0.539·55-s − 0.264·57-s + 1.04·59-s + 1.79·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.673415293\)
\(L(\frac12)\) \(\approx\) \(1.673415293\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 4 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.002145793349034303386882789385, −7.74206895127479604135859330168, −6.64159139979810876027460977242, −6.09050200317240069522502521420, −5.19910910847363332156501483830, −4.16104953155253670272146072421, −3.37483914573339538706864448662, −2.94207105490551775645458620008, −2.21972199427398646415186339445, −0.60473382774498273174936177378, 0.60473382774498273174936177378, 2.21972199427398646415186339445, 2.94207105490551775645458620008, 3.37483914573339538706864448662, 4.16104953155253670272146072421, 5.19910910847363332156501483830, 6.09050200317240069522502521420, 6.64159139979810876027460977242, 7.74206895127479604135859330168, 8.002145793349034303386882789385

Graph of the $Z$-function along the critical line