Properties

Label 2-6080-1.1-c1-0-21
Degree $2$
Conductor $6080$
Sign $1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.585·3-s − 5-s + 4.82·7-s − 2.65·9-s − 2·11-s − 2.24·13-s + 0.585·15-s − 4.82·17-s − 19-s − 2.82·21-s + 6·23-s + 25-s + 3.31·27-s − 10.4·29-s + 1.17·31-s + 1.17·33-s − 4.82·35-s + 10.2·37-s + 1.31·39-s − 7.65·41-s − 0.828·43-s + 2.65·45-s − 0.828·47-s + 16.3·49-s + 2.82·51-s + 5.07·53-s + 2·55-s + ⋯
L(s)  = 1  − 0.338·3-s − 0.447·5-s + 1.82·7-s − 0.885·9-s − 0.603·11-s − 0.621·13-s + 0.151·15-s − 1.17·17-s − 0.229·19-s − 0.617·21-s + 1.25·23-s + 0.200·25-s + 0.637·27-s − 1.94·29-s + 0.210·31-s + 0.203·33-s − 0.816·35-s + 1.68·37-s + 0.210·39-s − 1.19·41-s − 0.126·43-s + 0.396·45-s − 0.120·47-s + 2.33·49-s + 0.396·51-s + 0.696·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.387196386\)
\(L(\frac12)\) \(\approx\) \(1.387196386\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 + T \)
good3 \( 1 + 0.585T + 3T^{2} \)
7 \( 1 - 4.82T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 2.24T + 13T^{2} \)
17 \( 1 + 4.82T + 17T^{2} \)
23 \( 1 - 6T + 23T^{2} \)
29 \( 1 + 10.4T + 29T^{2} \)
31 \( 1 - 1.17T + 31T^{2} \)
37 \( 1 - 10.2T + 37T^{2} \)
41 \( 1 + 7.65T + 41T^{2} \)
43 \( 1 + 0.828T + 43T^{2} \)
47 \( 1 + 0.828T + 47T^{2} \)
53 \( 1 - 5.07T + 53T^{2} \)
59 \( 1 - 2.34T + 59T^{2} \)
61 \( 1 - 2.34T + 61T^{2} \)
67 \( 1 + 0.585T + 67T^{2} \)
71 \( 1 + 10.8T + 71T^{2} \)
73 \( 1 - 14.4T + 73T^{2} \)
79 \( 1 - 9.65T + 79T^{2} \)
83 \( 1 - 9.31T + 83T^{2} \)
89 \( 1 - 10.4T + 89T^{2} \)
97 \( 1 + 1.75T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.947861460022356608331365400666, −7.56816008764371744985267929475, −6.73293544784854002754262875083, −5.76684419830009614012899265730, −4.98504766596448602259716081332, −4.77616891203080074289430267124, −3.75088571733376059673956504636, −2.59335884053265231702517697252, −1.93929606032299414233200589226, −0.61401219380394009344543808522, 0.61401219380394009344543808522, 1.93929606032299414233200589226, 2.59335884053265231702517697252, 3.75088571733376059673956504636, 4.77616891203080074289430267124, 4.98504766596448602259716081332, 5.76684419830009614012899265730, 6.73293544784854002754262875083, 7.56816008764371744985267929475, 7.947861460022356608331365400666

Graph of the $Z$-function along the critical line