L(s) = 1 | − 1.41i·2-s − 2.00·4-s + 4.24·5-s + 2.82i·8-s − 6i·10-s + 4·13-s + 4.00·16-s + (−2.12 + 3.53i)17-s − 8.48·20-s + 12.9·25-s − 5.65i·26-s + 4.24·29-s − 5.65i·32-s + (5.00 + 3i)34-s − 12i·37-s + ⋯ |
L(s) = 1 | − 0.999i·2-s − 1.00·4-s + 1.89·5-s + 1.00i·8-s − 1.89i·10-s + 1.10·13-s + 1.00·16-s + (−0.514 + 0.857i)17-s − 1.89·20-s + 2.59·25-s − 1.10i·26-s + 0.787·29-s − 1.00i·32-s + (0.857 + 0.514i)34-s − 1.97i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 612 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.403 + 0.915i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 612 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.403 + 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.57413 - 1.02671i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.57413 - 1.02671i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 1.41iT \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (2.12 - 3.53i)T \) |
good | 5 | \( 1 - 4.24T + 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 - 4.24T + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + 12iT - 37T^{2} \) |
| 41 | \( 1 + 12.7T + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 7.07iT - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 12iT - 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 6iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 18.3iT - 89T^{2} \) |
| 97 | \( 1 - 18iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57800020521757063207459569445, −9.711449739754592838307808238067, −9.019792580697769266187733693614, −8.293362797966283743041912031050, −6.56012848394888563171478145990, −5.82406983635837267046016990018, −4.90448517018594930684171028443, −3.57136937362775505058143052958, −2.29737296873673019062319256402, −1.41782464593145812618402367898,
1.43465017352053930939310262577, 3.05861174260679874024368265805, 4.70269060891022292300479711789, 5.47309714159647814068770226520, 6.39578760802427181320237802216, 6.82735631565073382983028544291, 8.351374099554834379360659646890, 8.933911177544503426285143134084, 9.856707297964413275165864859537, 10.33036184573592275883695698322