L(s) = 1 | − 1.41i·2-s − 2.00·4-s + 4.24·5-s + 2.82i·8-s − 6i·10-s + 4·13-s + 4.00·16-s + (−2.12 + 3.53i)17-s − 8.48·20-s + 12.9·25-s − 5.65i·26-s + 4.24·29-s − 5.65i·32-s + (5.00 + 3i)34-s − 12i·37-s + ⋯ |
L(s) = 1 | − 0.999i·2-s − 1.00·4-s + 1.89·5-s + 1.00i·8-s − 1.89i·10-s + 1.10·13-s + 1.00·16-s + (−0.514 + 0.857i)17-s − 1.89·20-s + 2.59·25-s − 1.10i·26-s + 0.787·29-s − 1.00i·32-s + (0.857 + 0.514i)34-s − 1.97i·37-s + ⋯ |
Λ(s)=(=(612s/2ΓC(s)L(s)(0.403+0.915i)Λ(2−s)
Λ(s)=(=(612s/2ΓC(s+1/2)L(s)(0.403+0.915i)Λ(1−s)
Degree: |
2 |
Conductor: |
612
= 22⋅32⋅17
|
Sign: |
0.403+0.915i
|
Analytic conductor: |
4.88684 |
Root analytic conductor: |
2.21062 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ612(611,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 612, ( :1/2), 0.403+0.915i)
|
Particular Values
L(1) |
≈ |
1.57413−1.02671i |
L(21) |
≈ |
1.57413−1.02671i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+1.41iT |
| 3 | 1 |
| 17 | 1+(2.12−3.53i)T |
good | 5 | 1−4.24T+5T2 |
| 7 | 1+7T2 |
| 11 | 1−11T2 |
| 13 | 1−4T+13T2 |
| 19 | 1−19T2 |
| 23 | 1−23T2 |
| 29 | 1−4.24T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+12iT−37T2 |
| 41 | 1+12.7T+41T2 |
| 43 | 1−43T2 |
| 47 | 1+47T2 |
| 53 | 1−7.07iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+12iT−61T2 |
| 67 | 1−67T2 |
| 71 | 1−71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1+83T2 |
| 89 | 1−18.3iT−89T2 |
| 97 | 1−18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57800020521757063207459569445, −9.711449739754592838307808238067, −9.019792580697769266187733693614, −8.293362797966283743041912031050, −6.56012848394888563171478145990, −5.82406983635837267046016990018, −4.90448517018594930684171028443, −3.57136937362775505058143052958, −2.29737296873673019062319256402, −1.41782464593145812618402367898,
1.43465017352053930939310262577, 3.05861174260679874024368265805, 4.70269060891022292300479711789, 5.47309714159647814068770226520, 6.39578760802427181320237802216, 6.82735631565073382983028544291, 8.351374099554834379360659646890, 8.933911177544503426285143134084, 9.856707297964413275165864859537, 10.33036184573592275883695698322