L(s) = 1 | − 2·5-s − 4·7-s + 8·11-s + 8·17-s + 12·23-s + 2·25-s − 10·29-s + 12·31-s + 8·35-s − 6·37-s + 2·41-s − 8·47-s + 8·49-s − 16·55-s − 14·61-s + 8·67-s + 4·71-s + 22·73-s − 32·77-s + 20·79-s − 16·85-s + 12·89-s + 2·97-s − 20·101-s − 16·103-s + 8·107-s − 2·109-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 1.51·7-s + 2.41·11-s + 1.94·17-s + 2.50·23-s + 2/5·25-s − 1.85·29-s + 2.15·31-s + 1.35·35-s − 0.986·37-s + 0.312·41-s − 1.16·47-s + 8/7·49-s − 2.15·55-s − 1.79·61-s + 0.977·67-s + 0.474·71-s + 2.57·73-s − 3.64·77-s + 2.25·79-s − 1.73·85-s + 1.27·89-s + 0.203·97-s − 1.99·101-s − 1.57·103-s + 0.773·107-s − 0.191·109-s + ⋯ |
Λ(s)=(=(374544s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(374544s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
374544
= 24⋅34⋅172
|
Sign: |
1
|
Analytic conductor: |
23.8812 |
Root analytic conductor: |
2.21062 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 374544, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.642478717 |
L(21) |
≈ |
1.642478717 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 17 | C2 | 1−8T+pT2 |
good | 5 | C2 | (1−2T+pT2)(1+4T+pT2) |
| 7 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 11 | C22 | 1−8T+32T2−8pT3+p2T4 |
| 13 | C2 | (1+pT2)2 |
| 19 | C22 | 1−22T2+p2T4 |
| 23 | C22 | 1−12T+72T2−12pT3+p2T4 |
| 29 | C22 | 1+10T+50T2+10pT3+p2T4 |
| 31 | C22 | 1−12T+72T2−12pT3+p2T4 |
| 37 | C22 | 1+6T+18T2+6pT3+p2T4 |
| 41 | C2 | (1−10T+pT2)(1+8T+pT2) |
| 43 | C2 | (1−pT2)2 |
| 47 | C2 | (1+4T+pT2)2 |
| 53 | C22 | 1−70T2+p2T4 |
| 59 | C22 | 1+26T2+p2T4 |
| 61 | C22 | 1+14T+98T2+14pT3+p2T4 |
| 67 | C2 | (1−4T+pT2)2 |
| 71 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 73 | C2 | (1−16T+pT2)(1−6T+pT2) |
| 79 | C22 | 1−20T+200T2−20pT3+p2T4 |
| 83 | C22 | 1−150T2+p2T4 |
| 89 | C2 | (1−6T+pT2)2 |
| 97 | C22 | 1−2T+2T2−2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73832354680183839005206663074, −10.57666994473032512311495035219, −9.712943332079620702904224880717, −9.399053246256000894384537368025, −9.374925459912937453641427683254, −8.854669748143288446263038339853, −8.091462973279646554223775897170, −7.86357144834143598832965002568, −7.17029040357322757241518491399, −6.72803835872275106961877198295, −6.53430347233623719086091638147, −6.09576564322952022389165580841, −5.21231917020507877968658723982, −4.96466095759736728144939614278, −3.90805101118437922388867547692, −3.75370463950568375824643881756, −3.30778476311261671731741503051, −2.78581035484535109265896794328, −1.42468603163083608634659134336, −0.814687359582873198965572374691,
0.814687359582873198965572374691, 1.42468603163083608634659134336, 2.78581035484535109265896794328, 3.30778476311261671731741503051, 3.75370463950568375824643881756, 3.90805101118437922388867547692, 4.96466095759736728144939614278, 5.21231917020507877968658723982, 6.09576564322952022389165580841, 6.53430347233623719086091638147, 6.72803835872275106961877198295, 7.17029040357322757241518491399, 7.86357144834143598832965002568, 8.091462973279646554223775897170, 8.854669748143288446263038339853, 9.374925459912937453641427683254, 9.399053246256000894384537368025, 9.712943332079620702904224880717, 10.57666994473032512311495035219, 10.73832354680183839005206663074