Properties

Label 2-6120-17.16-c1-0-45
Degree $2$
Conductor $6120$
Sign $0.846 + 0.532i$
Analytic cond. $48.8684$
Root an. cond. $6.99059$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·5-s − 0.489i·7-s − 0.489i·11-s + 0.292·13-s + (−2.19 + 3.48i)17-s − 7.17·19-s + 2.29i·23-s − 25-s + 1.51i·29-s − 4.68i·31-s − 0.489·35-s + 1.51i·37-s + 7.86i·41-s + 9.95·43-s + 13.5·47-s + ⋯
L(s)  = 1  − 0.447i·5-s − 0.184i·7-s − 0.147i·11-s + 0.0811·13-s + (−0.532 + 0.846i)17-s − 1.64·19-s + 0.478i·23-s − 0.200·25-s + 0.280i·29-s − 0.841i·31-s − 0.0827·35-s + 0.248i·37-s + 1.22i·41-s + 1.51·43-s + 1.97·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.846 + 0.532i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.846 + 0.532i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6120\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $0.846 + 0.532i$
Analytic conductor: \(48.8684\)
Root analytic conductor: \(6.99059\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6120} (1801, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6120,\ (\ :1/2),\ 0.846 + 0.532i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.658300399\)
\(L(\frac12)\) \(\approx\) \(1.658300399\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + iT \)
17 \( 1 + (2.19 - 3.48i)T \)
good7 \( 1 + 0.489iT - 7T^{2} \)
11 \( 1 + 0.489iT - 11T^{2} \)
13 \( 1 - 0.292T + 13T^{2} \)
19 \( 1 + 7.17T + 19T^{2} \)
23 \( 1 - 2.29iT - 23T^{2} \)
29 \( 1 - 1.51iT - 29T^{2} \)
31 \( 1 + 4.68iT - 31T^{2} \)
37 \( 1 - 1.51iT - 37T^{2} \)
41 \( 1 - 7.86iT - 41T^{2} \)
43 \( 1 - 9.95T + 43T^{2} \)
47 \( 1 - 13.5T + 47T^{2} \)
53 \( 1 + 1.80T + 53T^{2} \)
59 \( 1 - 7.07T + 59T^{2} \)
61 \( 1 + 5.70iT - 61T^{2} \)
67 \( 1 - 7.27T + 67T^{2} \)
71 \( 1 - 0.585iT - 71T^{2} \)
73 \( 1 + 16.8iT - 73T^{2} \)
79 \( 1 + 15.9iT - 79T^{2} \)
83 \( 1 - 10.3T + 83T^{2} \)
89 \( 1 - 4.68T + 89T^{2} \)
97 \( 1 - 3.95iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.007064335075448980749951120372, −7.41501938213716902610375169277, −6.38398946142241896259946840457, −6.04632002546085230151611608308, −5.08445865238494763986500161557, −4.23835399643771627919248962002, −3.81367570666025512299658884843, −2.56705030079380637250679071922, −1.78630415111860286542859030890, −0.59778565897287705433973027982, 0.73542659849945289134755050936, 2.26750431824503419211150423726, 2.56169827577738180335151126682, 3.88174848661140195149499417311, 4.32980926577032009770173838860, 5.37142278222587794695119173880, 5.98511578217747247752329019223, 6.92977140801263009584416800744, 7.14523516236785133112943586421, 8.236615322691790416040992617494

Graph of the $Z$-function along the critical line