L(s) = 1 | − i·5-s − 0.489i·7-s − 0.489i·11-s + 0.292·13-s + (−2.19 + 3.48i)17-s − 7.17·19-s + 2.29i·23-s − 25-s + 1.51i·29-s − 4.68i·31-s − 0.489·35-s + 1.51i·37-s + 7.86i·41-s + 9.95·43-s + 13.5·47-s + ⋯ |
L(s) = 1 | − 0.447i·5-s − 0.184i·7-s − 0.147i·11-s + 0.0811·13-s + (−0.532 + 0.846i)17-s − 1.64·19-s + 0.478i·23-s − 0.200·25-s + 0.280i·29-s − 0.841i·31-s − 0.0827·35-s + 0.248i·37-s + 1.22i·41-s + 1.51·43-s + 1.97·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.846 + 0.532i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.846 + 0.532i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.658300399\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.658300399\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 17 | \( 1 + (2.19 - 3.48i)T \) |
good | 7 | \( 1 + 0.489iT - 7T^{2} \) |
| 11 | \( 1 + 0.489iT - 11T^{2} \) |
| 13 | \( 1 - 0.292T + 13T^{2} \) |
| 19 | \( 1 + 7.17T + 19T^{2} \) |
| 23 | \( 1 - 2.29iT - 23T^{2} \) |
| 29 | \( 1 - 1.51iT - 29T^{2} \) |
| 31 | \( 1 + 4.68iT - 31T^{2} \) |
| 37 | \( 1 - 1.51iT - 37T^{2} \) |
| 41 | \( 1 - 7.86iT - 41T^{2} \) |
| 43 | \( 1 - 9.95T + 43T^{2} \) |
| 47 | \( 1 - 13.5T + 47T^{2} \) |
| 53 | \( 1 + 1.80T + 53T^{2} \) |
| 59 | \( 1 - 7.07T + 59T^{2} \) |
| 61 | \( 1 + 5.70iT - 61T^{2} \) |
| 67 | \( 1 - 7.27T + 67T^{2} \) |
| 71 | \( 1 - 0.585iT - 71T^{2} \) |
| 73 | \( 1 + 16.8iT - 73T^{2} \) |
| 79 | \( 1 + 15.9iT - 79T^{2} \) |
| 83 | \( 1 - 10.3T + 83T^{2} \) |
| 89 | \( 1 - 4.68T + 89T^{2} \) |
| 97 | \( 1 - 3.95iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.007064335075448980749951120372, −7.41501938213716902610375169277, −6.38398946142241896259946840457, −6.04632002546085230151611608308, −5.08445865238494763986500161557, −4.23835399643771627919248962002, −3.81367570666025512299658884843, −2.56705030079380637250679071922, −1.78630415111860286542859030890, −0.59778565897287705433973027982,
0.73542659849945289134755050936, 2.26750431824503419211150423726, 2.56169827577738180335151126682, 3.88174848661140195149499417311, 4.32980926577032009770173838860, 5.37142278222587794695119173880, 5.98511578217747247752329019223, 6.92977140801263009584416800744, 7.14523516236785133112943586421, 8.236615322691790416040992617494