L(s) = 1 | − i·5-s − 0.489i·7-s − 0.489i·11-s + 0.292·13-s + (−2.19 + 3.48i)17-s − 7.17·19-s + 2.29i·23-s − 25-s + 1.51i·29-s − 4.68i·31-s − 0.489·35-s + 1.51i·37-s + 7.86i·41-s + 9.95·43-s + 13.5·47-s + ⋯ |
L(s) = 1 | − 0.447i·5-s − 0.184i·7-s − 0.147i·11-s + 0.0811·13-s + (−0.532 + 0.846i)17-s − 1.64·19-s + 0.478i·23-s − 0.200·25-s + 0.280i·29-s − 0.841i·31-s − 0.0827·35-s + 0.248i·37-s + 1.22i·41-s + 1.51·43-s + 1.97·47-s + ⋯ |
Λ(s)=(=(6120s/2ΓC(s)L(s)(0.846+0.532i)Λ(2−s)
Λ(s)=(=(6120s/2ΓC(s+1/2)L(s)(0.846+0.532i)Λ(1−s)
Degree: |
2 |
Conductor: |
6120
= 23⋅32⋅5⋅17
|
Sign: |
0.846+0.532i
|
Analytic conductor: |
48.8684 |
Root analytic conductor: |
6.99059 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6120(1801,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 6120, ( :1/2), 0.846+0.532i)
|
Particular Values
L(1) |
≈ |
1.658300399 |
L(21) |
≈ |
1.658300399 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+iT |
| 17 | 1+(2.19−3.48i)T |
good | 7 | 1+0.489iT−7T2 |
| 11 | 1+0.489iT−11T2 |
| 13 | 1−0.292T+13T2 |
| 19 | 1+7.17T+19T2 |
| 23 | 1−2.29iT−23T2 |
| 29 | 1−1.51iT−29T2 |
| 31 | 1+4.68iT−31T2 |
| 37 | 1−1.51iT−37T2 |
| 41 | 1−7.86iT−41T2 |
| 43 | 1−9.95T+43T2 |
| 47 | 1−13.5T+47T2 |
| 53 | 1+1.80T+53T2 |
| 59 | 1−7.07T+59T2 |
| 61 | 1+5.70iT−61T2 |
| 67 | 1−7.27T+67T2 |
| 71 | 1−0.585iT−71T2 |
| 73 | 1+16.8iT−73T2 |
| 79 | 1+15.9iT−79T2 |
| 83 | 1−10.3T+83T2 |
| 89 | 1−4.68T+89T2 |
| 97 | 1−3.95iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.007064335075448980749951120372, −7.41501938213716902610375169277, −6.38398946142241896259946840457, −6.04632002546085230151611608308, −5.08445865238494763986500161557, −4.23835399643771627919248962002, −3.81367570666025512299658884843, −2.56705030079380637250679071922, −1.78630415111860286542859030890, −0.59778565897287705433973027982,
0.73542659849945289134755050936, 2.26750431824503419211150423726, 2.56169827577738180335151126682, 3.88174848661140195149499417311, 4.32980926577032009770173838860, 5.37142278222587794695119173880, 5.98511578217747247752329019223, 6.92977140801263009584416800744, 7.14523516236785133112943586421, 8.236615322691790416040992617494