Properties

Label 2-6120-17.16-c1-0-71
Degree $2$
Conductor $6120$
Sign $0.312 + 0.949i$
Analytic cond. $48.8684$
Root an. cond. $6.99059$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·5-s − 1.71i·7-s − 1.71i·11-s + 4.20·13-s + (3.91 − 1.28i)17-s + 3.33·19-s − 6.20i·23-s − 25-s − 3.71i·29-s − 3.62i·31-s + 1.71·35-s − 3.71i·37-s + 10.9i·41-s + 1.15·43-s − 9.17·47-s + ⋯
L(s)  = 1  + 0.447i·5-s − 0.646i·7-s − 0.515i·11-s + 1.16·13-s + (0.949 − 0.312i)17-s + 0.765·19-s − 1.29i·23-s − 0.200·25-s − 0.689i·29-s − 0.651i·31-s + 0.289·35-s − 0.610i·37-s + 1.71i·41-s + 0.176·43-s − 1.33·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.312 + 0.949i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.312 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6120\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $0.312 + 0.949i$
Analytic conductor: \(48.8684\)
Root analytic conductor: \(6.99059\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6120} (1801, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6120,\ (\ :1/2),\ 0.312 + 0.949i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.998861606\)
\(L(\frac12)\) \(\approx\) \(1.998861606\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - iT \)
17 \( 1 + (-3.91 + 1.28i)T \)
good7 \( 1 + 1.71iT - 7T^{2} \)
11 \( 1 + 1.71iT - 11T^{2} \)
13 \( 1 - 4.20T + 13T^{2} \)
19 \( 1 - 3.33T + 19T^{2} \)
23 \( 1 + 6.20iT - 23T^{2} \)
29 \( 1 + 3.71iT - 29T^{2} \)
31 \( 1 + 3.62iT - 31T^{2} \)
37 \( 1 + 3.71iT - 37T^{2} \)
41 \( 1 - 10.9iT - 41T^{2} \)
43 \( 1 - 1.15T + 43T^{2} \)
47 \( 1 + 9.17T + 47T^{2} \)
53 \( 1 + 7.91T + 53T^{2} \)
59 \( 1 + 13.4T + 59T^{2} \)
61 \( 1 - 1.79iT - 61T^{2} \)
67 \( 1 - 6.78T + 67T^{2} \)
71 \( 1 + 8.41iT - 71T^{2} \)
73 \( 1 + 6.38iT - 73T^{2} \)
79 \( 1 - 7.15iT - 79T^{2} \)
83 \( 1 + 1.83T + 83T^{2} \)
89 \( 1 + 3.62T + 89T^{2} \)
97 \( 1 - 4.84iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.925554241376838730206169988472, −7.29921194363174030617371002043, −6.31862491568440972829634867358, −6.06697849281670078738177485035, −5.01794581996673426890631286445, −4.19013168786127387472203383633, −3.40633269478720327528702930771, −2.81111864604084126220039669047, −1.50070477321755276050712810507, −0.56176115867467754822769772809, 1.17293833605922887236333773399, 1.82153566648206638954955062258, 3.15234148749533175173720939666, 3.63204252411202958112971648551, 4.70799489130361158426982311686, 5.45264880992298007939741475216, 5.87605750443466502152355512686, 6.82163405740894771858389844600, 7.57251856737053927021568291911, 8.239898402909554763568250450405

Graph of the $Z$-function along the critical line