L(s) = 1 | + i·5-s − 1.71i·7-s − 1.71i·11-s + 4.20·13-s + (3.91 − 1.28i)17-s + 3.33·19-s − 6.20i·23-s − 25-s − 3.71i·29-s − 3.62i·31-s + 1.71·35-s − 3.71i·37-s + 10.9i·41-s + 1.15·43-s − 9.17·47-s + ⋯ |
L(s) = 1 | + 0.447i·5-s − 0.646i·7-s − 0.515i·11-s + 1.16·13-s + (0.949 − 0.312i)17-s + 0.765·19-s − 1.29i·23-s − 0.200·25-s − 0.689i·29-s − 0.651i·31-s + 0.289·35-s − 0.610i·37-s + 1.71i·41-s + 0.176·43-s − 1.33·47-s + ⋯ |
Λ(s)=(=(6120s/2ΓC(s)L(s)(0.312+0.949i)Λ(2−s)
Λ(s)=(=(6120s/2ΓC(s+1/2)L(s)(0.312+0.949i)Λ(1−s)
Degree: |
2 |
Conductor: |
6120
= 23⋅32⋅5⋅17
|
Sign: |
0.312+0.949i
|
Analytic conductor: |
48.8684 |
Root analytic conductor: |
6.99059 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ6120(1801,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 6120, ( :1/2), 0.312+0.949i)
|
Particular Values
L(1) |
≈ |
1.998861606 |
L(21) |
≈ |
1.998861606 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−iT |
| 17 | 1+(−3.91+1.28i)T |
good | 7 | 1+1.71iT−7T2 |
| 11 | 1+1.71iT−11T2 |
| 13 | 1−4.20T+13T2 |
| 19 | 1−3.33T+19T2 |
| 23 | 1+6.20iT−23T2 |
| 29 | 1+3.71iT−29T2 |
| 31 | 1+3.62iT−31T2 |
| 37 | 1+3.71iT−37T2 |
| 41 | 1−10.9iT−41T2 |
| 43 | 1−1.15T+43T2 |
| 47 | 1+9.17T+47T2 |
| 53 | 1+7.91T+53T2 |
| 59 | 1+13.4T+59T2 |
| 61 | 1−1.79iT−61T2 |
| 67 | 1−6.78T+67T2 |
| 71 | 1+8.41iT−71T2 |
| 73 | 1+6.38iT−73T2 |
| 79 | 1−7.15iT−79T2 |
| 83 | 1+1.83T+83T2 |
| 89 | 1+3.62T+89T2 |
| 97 | 1−4.84iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.925554241376838730206169988472, −7.29921194363174030617371002043, −6.31862491568440972829634867358, −6.06697849281670078738177485035, −5.01794581996673426890631286445, −4.19013168786127387472203383633, −3.40633269478720327528702930771, −2.81111864604084126220039669047, −1.50070477321755276050712810507, −0.56176115867467754822769772809,
1.17293833605922887236333773399, 1.82153566648206638954955062258, 3.15234148749533175173720939666, 3.63204252411202958112971648551, 4.70799489130361158426982311686, 5.45264880992298007939741475216, 5.87605750443466502152355512686, 6.82163405740894771858389844600, 7.57251856737053927021568291911, 8.239898402909554763568250450405