Properties

Label 2-616-1.1-c1-0-6
Degree $2$
Conductor $616$
Sign $1$
Analytic cond. $4.91878$
Root an. cond. $2.21783$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 2·5-s + 7-s + 9-s − 11-s + 4·15-s + 4·17-s + 4·19-s + 2·21-s − 4·23-s − 25-s − 4·27-s + 2·29-s − 2·31-s − 2·33-s + 2·35-s − 6·37-s + 4·41-s − 4·43-s + 2·45-s + 2·47-s + 49-s + 8·51-s + 2·53-s − 2·55-s + 8·57-s − 6·59-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.894·5-s + 0.377·7-s + 1/3·9-s − 0.301·11-s + 1.03·15-s + 0.970·17-s + 0.917·19-s + 0.436·21-s − 0.834·23-s − 1/5·25-s − 0.769·27-s + 0.371·29-s − 0.359·31-s − 0.348·33-s + 0.338·35-s − 0.986·37-s + 0.624·41-s − 0.609·43-s + 0.298·45-s + 0.291·47-s + 1/7·49-s + 1.12·51-s + 0.274·53-s − 0.269·55-s + 1.05·57-s − 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(616\)    =    \(2^{3} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(4.91878\)
Root analytic conductor: \(2.21783\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 616,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.483500673\)
\(L(\frac12)\) \(\approx\) \(2.483500673\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
11 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
5 \( 1 - 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 16 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28981135359909303761462495429, −9.721026942562876571917863787048, −8.900267729944967573194117141070, −8.051352337308495880478764667111, −7.35767416332621097285914793198, −5.98413065916960487951751915735, −5.19667268136125807114507816372, −3.75056949088258166882410190362, −2.72800026016992914882879677292, −1.66644659770392612638218462013, 1.66644659770392612638218462013, 2.72800026016992914882879677292, 3.75056949088258166882410190362, 5.19667268136125807114507816372, 5.98413065916960487951751915735, 7.35767416332621097285914793198, 8.051352337308495880478764667111, 8.900267729944967573194117141070, 9.721026942562876571917863787048, 10.28981135359909303761462495429

Graph of the $Z$-function along the critical line