L(s) = 1 | − 2.56·3-s + 0.561·5-s − 7-s + 3.56·9-s + 11-s + 3.12·13-s − 1.43·15-s − 2·17-s − 5.12·19-s + 2.56·21-s − 1.43·23-s − 4.68·25-s − 1.43·27-s − 2·29-s − 10.5·31-s − 2.56·33-s − 0.561·35-s + 4.56·37-s − 8·39-s − 10·41-s + 4·43-s + 2.00·45-s − 6.24·47-s + 49-s + 5.12·51-s − 4.24·53-s + 0.561·55-s + ⋯ |
L(s) = 1 | − 1.47·3-s + 0.251·5-s − 0.377·7-s + 1.18·9-s + 0.301·11-s + 0.866·13-s − 0.371·15-s − 0.485·17-s − 1.17·19-s + 0.558·21-s − 0.299·23-s − 0.936·25-s − 0.276·27-s − 0.371·29-s − 1.89·31-s − 0.445·33-s − 0.0949·35-s + 0.749·37-s − 1.28·39-s − 1.56·41-s + 0.609·43-s + 0.298·45-s − 0.911·47-s + 0.142·49-s + 0.717·51-s − 0.583·53-s + 0.0757·55-s + ⋯ |
Λ(s)=(=(616s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(616s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
| 11 | 1−T |
good | 3 | 1+2.56T+3T2 |
| 5 | 1−0.561T+5T2 |
| 13 | 1−3.12T+13T2 |
| 17 | 1+2T+17T2 |
| 19 | 1+5.12T+19T2 |
| 23 | 1+1.43T+23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+10.5T+31T2 |
| 37 | 1−4.56T+37T2 |
| 41 | 1+10T+41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+6.24T+47T2 |
| 53 | 1+4.24T+53T2 |
| 59 | 1+5.43T+59T2 |
| 61 | 1+4.24T+61T2 |
| 67 | 1+2.56T+67T2 |
| 71 | 1−3.68T+71T2 |
| 73 | 1+4.24T+73T2 |
| 79 | 1−5.12T+79T2 |
| 83 | 1+8T+83T2 |
| 89 | 1+12.5T+89T2 |
| 97 | 1−8.56T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.43913578322948856267191085054, −9.484333193830727732894361336105, −8.527295296177033558571543689271, −7.23420393626824865651930951731, −6.24770212755611380422417529504, −5.89832044716397750489797354287, −4.72563752578301480791720225628, −3.67537811329081465669048290880, −1.77691171676713607451976111874, 0,
1.77691171676713607451976111874, 3.67537811329081465669048290880, 4.72563752578301480791720225628, 5.89832044716397750489797354287, 6.24770212755611380422417529504, 7.23420393626824865651930951731, 8.527295296177033558571543689271, 9.484333193830727732894361336105, 10.43913578322948856267191085054