Properties

Label 2-616-1.1-c1-0-8
Degree $2$
Conductor $616$
Sign $-1$
Analytic cond. $4.91878$
Root an. cond. $2.21783$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.56·3-s + 0.561·5-s − 7-s + 3.56·9-s + 11-s + 3.12·13-s − 1.43·15-s − 2·17-s − 5.12·19-s + 2.56·21-s − 1.43·23-s − 4.68·25-s − 1.43·27-s − 2·29-s − 10.5·31-s − 2.56·33-s − 0.561·35-s + 4.56·37-s − 8·39-s − 10·41-s + 4·43-s + 2.00·45-s − 6.24·47-s + 49-s + 5.12·51-s − 4.24·53-s + 0.561·55-s + ⋯
L(s)  = 1  − 1.47·3-s + 0.251·5-s − 0.377·7-s + 1.18·9-s + 0.301·11-s + 0.866·13-s − 0.371·15-s − 0.485·17-s − 1.17·19-s + 0.558·21-s − 0.299·23-s − 0.936·25-s − 0.276·27-s − 0.371·29-s − 1.89·31-s − 0.445·33-s − 0.0949·35-s + 0.749·37-s − 1.28·39-s − 1.56·41-s + 0.609·43-s + 0.298·45-s − 0.911·47-s + 0.142·49-s + 0.717·51-s − 0.583·53-s + 0.0757·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(616\)    =    \(2^{3} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(4.91878\)
Root analytic conductor: \(2.21783\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 616,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
11 \( 1 - T \)
good3 \( 1 + 2.56T + 3T^{2} \)
5 \( 1 - 0.561T + 5T^{2} \)
13 \( 1 - 3.12T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 5.12T + 19T^{2} \)
23 \( 1 + 1.43T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 10.5T + 31T^{2} \)
37 \( 1 - 4.56T + 37T^{2} \)
41 \( 1 + 10T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 6.24T + 47T^{2} \)
53 \( 1 + 4.24T + 53T^{2} \)
59 \( 1 + 5.43T + 59T^{2} \)
61 \( 1 + 4.24T + 61T^{2} \)
67 \( 1 + 2.56T + 67T^{2} \)
71 \( 1 - 3.68T + 71T^{2} \)
73 \( 1 + 4.24T + 73T^{2} \)
79 \( 1 - 5.12T + 79T^{2} \)
83 \( 1 + 8T + 83T^{2} \)
89 \( 1 + 12.5T + 89T^{2} \)
97 \( 1 - 8.56T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.43913578322948856267191085054, −9.484333193830727732894361336105, −8.527295296177033558571543689271, −7.23420393626824865651930951731, −6.24770212755611380422417529504, −5.89832044716397750489797354287, −4.72563752578301480791720225628, −3.67537811329081465669048290880, −1.77691171676713607451976111874, 0, 1.77691171676713607451976111874, 3.67537811329081465669048290880, 4.72563752578301480791720225628, 5.89832044716397750489797354287, 6.24770212755611380422417529504, 7.23420393626824865651930951731, 8.527295296177033558571543689271, 9.484333193830727732894361336105, 10.43913578322948856267191085054

Graph of the $Z$-function along the critical line