L(s) = 1 | − 2·3-s + 12.1·5-s − 7·7-s − 23·9-s + 11·11-s − 16.3·13-s − 24.3·15-s + 30.4·17-s + 43.1·19-s + 14·21-s + 138.·23-s + 22.9·25-s + 100·27-s − 18.9·29-s + 20.1·31-s − 22·33-s − 85.1·35-s + 83.3·37-s + 32.6·39-s − 277.·41-s + 379.·43-s − 279.·45-s + 137.·47-s + 49·49-s − 60.9·51-s + 6.99·53-s + 133.·55-s + ⋯ |
L(s) = 1 | − 0.384·3-s + 1.08·5-s − 0.377·7-s − 0.851·9-s + 0.301·11-s − 0.348·13-s − 0.418·15-s + 0.435·17-s + 0.521·19-s + 0.145·21-s + 1.25·23-s + 0.183·25-s + 0.712·27-s − 0.121·29-s + 0.116·31-s − 0.116·33-s − 0.411·35-s + 0.370·37-s + 0.134·39-s − 1.05·41-s + 1.34·43-s − 0.926·45-s + 0.425·47-s + 0.142·49-s − 0.167·51-s + 0.0181·53-s + 0.328·55-s + ⋯ |
Λ(s)=(=(616s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(616s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.906702411 |
L(21) |
≈ |
1.906702411 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+7T |
| 11 | 1−11T |
good | 3 | 1+2T+27T2 |
| 5 | 1−12.1T+125T2 |
| 13 | 1+16.3T+2.19e3T2 |
| 17 | 1−30.4T+4.91e3T2 |
| 19 | 1−43.1T+6.85e3T2 |
| 23 | 1−138.T+1.21e4T2 |
| 29 | 1+18.9T+2.43e4T2 |
| 31 | 1−20.1T+2.97e4T2 |
| 37 | 1−83.3T+5.06e4T2 |
| 41 | 1+277.T+6.89e4T2 |
| 43 | 1−379.T+7.95e4T2 |
| 47 | 1−137.T+1.03e5T2 |
| 53 | 1−6.99T+1.48e5T2 |
| 59 | 1+160.T+2.05e5T2 |
| 61 | 1−499.T+2.26e5T2 |
| 67 | 1−1.03e3T+3.00e5T2 |
| 71 | 1+319.T+3.57e5T2 |
| 73 | 1+699.T+3.89e5T2 |
| 79 | 1−181.T+4.93e5T2 |
| 83 | 1−1.41e3T+5.71e5T2 |
| 89 | 1−640.T+7.04e5T2 |
| 97 | 1−617.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.15121835027089500990482766180, −9.425837093179689911178496907344, −8.698556021186746690859352456922, −7.43996449460838653420156295329, −6.43619475930488780151446256329, −5.70388581418520990994110108970, −4.95020085092151565868102830871, −3.37347017909953614712346188513, −2.31323576181308357441243259491, −0.840144098044661097349100324063,
0.840144098044661097349100324063, 2.31323576181308357441243259491, 3.37347017909953614712346188513, 4.95020085092151565868102830871, 5.70388581418520990994110108970, 6.43619475930488780151446256329, 7.43996449460838653420156295329, 8.698556021186746690859352456922, 9.425837093179689911178496907344, 10.15121835027089500990482766180