Properties

Label 2-616-1.1-c3-0-41
Degree $2$
Conductor $616$
Sign $-1$
Analytic cond. $36.3451$
Root an. cond. $6.02869$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.15·3-s − 9.75·5-s − 7·7-s + 24.2·9-s + 11·11-s + 1.08·13-s − 69.8·15-s − 95.3·17-s − 77.1·19-s − 50.1·21-s + 114.·23-s − 29.8·25-s − 19.5·27-s + 280.·29-s − 233.·31-s + 78.7·33-s + 68.2·35-s − 294.·37-s + 7.76·39-s − 136.·41-s − 312.·43-s − 236.·45-s − 476.·47-s + 49·49-s − 682.·51-s + 283.·53-s − 107.·55-s + ⋯
L(s)  = 1  + 1.37·3-s − 0.872·5-s − 0.377·7-s + 0.898·9-s + 0.301·11-s + 0.0231·13-s − 1.20·15-s − 1.36·17-s − 0.931·19-s − 0.520·21-s + 1.03·23-s − 0.238·25-s − 0.139·27-s + 1.79·29-s − 1.35·31-s + 0.415·33-s + 0.329·35-s − 1.31·37-s + 0.0318·39-s − 0.520·41-s − 1.10·43-s − 0.784·45-s − 1.47·47-s + 0.142·49-s − 1.87·51-s + 0.733·53-s − 0.263·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(616\)    =    \(2^{3} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(36.3451\)
Root analytic conductor: \(6.02869\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 616,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 - 11T \)
good3 \( 1 - 7.15T + 27T^{2} \)
5 \( 1 + 9.75T + 125T^{2} \)
13 \( 1 - 1.08T + 2.19e3T^{2} \)
17 \( 1 + 95.3T + 4.91e3T^{2} \)
19 \( 1 + 77.1T + 6.85e3T^{2} \)
23 \( 1 - 114.T + 1.21e4T^{2} \)
29 \( 1 - 280.T + 2.43e4T^{2} \)
31 \( 1 + 233.T + 2.97e4T^{2} \)
37 \( 1 + 294.T + 5.06e4T^{2} \)
41 \( 1 + 136.T + 6.89e4T^{2} \)
43 \( 1 + 312.T + 7.95e4T^{2} \)
47 \( 1 + 476.T + 1.03e5T^{2} \)
53 \( 1 - 283.T + 1.48e5T^{2} \)
59 \( 1 + 706.T + 2.05e5T^{2} \)
61 \( 1 + 25.3T + 2.26e5T^{2} \)
67 \( 1 - 1.06e3T + 3.00e5T^{2} \)
71 \( 1 + 869.T + 3.57e5T^{2} \)
73 \( 1 - 197.T + 3.89e5T^{2} \)
79 \( 1 - 821.T + 4.93e5T^{2} \)
83 \( 1 + 668.T + 5.71e5T^{2} \)
89 \( 1 - 542.T + 7.04e5T^{2} \)
97 \( 1 + 1.70e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.546001743932536888070791681230, −8.663904814661975379525515397315, −8.354039109763948754866146141171, −7.19902732407976313883589631369, −6.51826133733614055246560577275, −4.81850391319363622175355855493, −3.83994431796268828603972400349, −3.06594020999220997094359959928, −1.89862928191657351545986347557, 0, 1.89862928191657351545986347557, 3.06594020999220997094359959928, 3.83994431796268828603972400349, 4.81850391319363622175355855493, 6.51826133733614055246560577275, 7.19902732407976313883589631369, 8.354039109763948754866146141171, 8.663904814661975379525515397315, 9.546001743932536888070791681230

Graph of the $Z$-function along the critical line