L(s) = 1 | + 7.15·3-s − 9.75·5-s − 7·7-s + 24.2·9-s + 11·11-s + 1.08·13-s − 69.8·15-s − 95.3·17-s − 77.1·19-s − 50.1·21-s + 114.·23-s − 29.8·25-s − 19.5·27-s + 280.·29-s − 233.·31-s + 78.7·33-s + 68.2·35-s − 294.·37-s + 7.76·39-s − 136.·41-s − 312.·43-s − 236.·45-s − 476.·47-s + 49·49-s − 682.·51-s + 283.·53-s − 107.·55-s + ⋯ |
L(s) = 1 | + 1.37·3-s − 0.872·5-s − 0.377·7-s + 0.898·9-s + 0.301·11-s + 0.0231·13-s − 1.20·15-s − 1.36·17-s − 0.931·19-s − 0.520·21-s + 1.03·23-s − 0.238·25-s − 0.139·27-s + 1.79·29-s − 1.35·31-s + 0.415·33-s + 0.329·35-s − 1.31·37-s + 0.0318·39-s − 0.520·41-s − 1.10·43-s − 0.784·45-s − 1.47·47-s + 0.142·49-s − 1.87·51-s + 0.733·53-s − 0.263·55-s + ⋯ |
Λ(s)=(=(616s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(616s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+7T |
| 11 | 1−11T |
good | 3 | 1−7.15T+27T2 |
| 5 | 1+9.75T+125T2 |
| 13 | 1−1.08T+2.19e3T2 |
| 17 | 1+95.3T+4.91e3T2 |
| 19 | 1+77.1T+6.85e3T2 |
| 23 | 1−114.T+1.21e4T2 |
| 29 | 1−280.T+2.43e4T2 |
| 31 | 1+233.T+2.97e4T2 |
| 37 | 1+294.T+5.06e4T2 |
| 41 | 1+136.T+6.89e4T2 |
| 43 | 1+312.T+7.95e4T2 |
| 47 | 1+476.T+1.03e5T2 |
| 53 | 1−283.T+1.48e5T2 |
| 59 | 1+706.T+2.05e5T2 |
| 61 | 1+25.3T+2.26e5T2 |
| 67 | 1−1.06e3T+3.00e5T2 |
| 71 | 1+869.T+3.57e5T2 |
| 73 | 1−197.T+3.89e5T2 |
| 79 | 1−821.T+4.93e5T2 |
| 83 | 1+668.T+5.71e5T2 |
| 89 | 1−542.T+7.04e5T2 |
| 97 | 1+1.70e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.546001743932536888070791681230, −8.663904814661975379525515397315, −8.354039109763948754866146141171, −7.19902732407976313883589631369, −6.51826133733614055246560577275, −4.81850391319363622175355855493, −3.83994431796268828603972400349, −3.06594020999220997094359959928, −1.89862928191657351545986347557, 0,
1.89862928191657351545986347557, 3.06594020999220997094359959928, 3.83994431796268828603972400349, 4.81850391319363622175355855493, 6.51826133733614055246560577275, 7.19902732407976313883589631369, 8.354039109763948754866146141171, 8.663904814661975379525515397315, 9.546001743932536888070791681230