L(s) = 1 | − 0.761·3-s + 15.6·5-s + 7·7-s − 26.4·9-s − 11·11-s − 0.574·13-s − 11.9·15-s − 129.·17-s − 35.3·19-s − 5.33·21-s − 182.·23-s + 119.·25-s + 40.6·27-s − 41.5·29-s + 96.4·31-s + 8.37·33-s + 109.·35-s − 172.·37-s + 0.437·39-s − 385.·41-s + 360.·43-s − 413.·45-s + 72.5·47-s + 49·49-s + 98.8·51-s + 153.·53-s − 172.·55-s + ⋯ |
L(s) = 1 | − 0.146·3-s + 1.39·5-s + 0.377·7-s − 0.978·9-s − 0.301·11-s − 0.0122·13-s − 0.205·15-s − 1.85·17-s − 0.427·19-s − 0.0554·21-s − 1.65·23-s + 0.957·25-s + 0.290·27-s − 0.266·29-s + 0.558·31-s + 0.0441·33-s + 0.528·35-s − 0.766·37-s + 0.00179·39-s − 1.46·41-s + 1.28·43-s − 1.36·45-s + 0.225·47-s + 0.142·49-s + 0.271·51-s + 0.397·53-s − 0.421·55-s + ⋯ |
Λ(s)=(=(616s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(616s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 3 | 1+0.761T+27T2 |
| 5 | 1−15.6T+125T2 |
| 13 | 1+0.574T+2.19e3T2 |
| 17 | 1+129.T+4.91e3T2 |
| 19 | 1+35.3T+6.85e3T2 |
| 23 | 1+182.T+1.21e4T2 |
| 29 | 1+41.5T+2.43e4T2 |
| 31 | 1−96.4T+2.97e4T2 |
| 37 | 1+172.T+5.06e4T2 |
| 41 | 1+385.T+6.89e4T2 |
| 43 | 1−360.T+7.95e4T2 |
| 47 | 1−72.5T+1.03e5T2 |
| 53 | 1−153.T+1.48e5T2 |
| 59 | 1−327.T+2.05e5T2 |
| 61 | 1−42.4T+2.26e5T2 |
| 67 | 1−572.T+3.00e5T2 |
| 71 | 1+784.T+3.57e5T2 |
| 73 | 1+452.T+3.89e5T2 |
| 79 | 1+557.T+4.93e5T2 |
| 83 | 1+160.T+5.71e5T2 |
| 89 | 1+395.T+7.04e5T2 |
| 97 | 1+1.09e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.858459557290438366342213137677, −8.866051262012561106834287146330, −8.294968706009296684933199447217, −6.87420981841409295357834622395, −6.04046047924669748548694766044, −5.37925943780929913833081469135, −4.24473359222431907117372524547, −2.58561068702553925785434231230, −1.86142104909081744572740522094, 0,
1.86142104909081744572740522094, 2.58561068702553925785434231230, 4.24473359222431907117372524547, 5.37925943780929913833081469135, 6.04046047924669748548694766044, 6.87420981841409295357834622395, 8.294968706009296684933199447217, 8.866051262012561106834287146330, 9.858459557290438366342213137677