Properties

Label 2-616-1.1-c3-0-39
Degree $2$
Conductor $616$
Sign $-1$
Analytic cond. $36.3451$
Root an. cond. $6.02869$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.761·3-s + 15.6·5-s + 7·7-s − 26.4·9-s − 11·11-s − 0.574·13-s − 11.9·15-s − 129.·17-s − 35.3·19-s − 5.33·21-s − 182.·23-s + 119.·25-s + 40.6·27-s − 41.5·29-s + 96.4·31-s + 8.37·33-s + 109.·35-s − 172.·37-s + 0.437·39-s − 385.·41-s + 360.·43-s − 413.·45-s + 72.5·47-s + 49·49-s + 98.8·51-s + 153.·53-s − 172.·55-s + ⋯
L(s)  = 1  − 0.146·3-s + 1.39·5-s + 0.377·7-s − 0.978·9-s − 0.301·11-s − 0.0122·13-s − 0.205·15-s − 1.85·17-s − 0.427·19-s − 0.0554·21-s − 1.65·23-s + 0.957·25-s + 0.290·27-s − 0.266·29-s + 0.558·31-s + 0.0441·33-s + 0.528·35-s − 0.766·37-s + 0.00179·39-s − 1.46·41-s + 1.28·43-s − 1.36·45-s + 0.225·47-s + 0.142·49-s + 0.271·51-s + 0.397·53-s − 0.421·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 616 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(616\)    =    \(2^{3} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(36.3451\)
Root analytic conductor: \(6.02869\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 616,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good3 \( 1 + 0.761T + 27T^{2} \)
5 \( 1 - 15.6T + 125T^{2} \)
13 \( 1 + 0.574T + 2.19e3T^{2} \)
17 \( 1 + 129.T + 4.91e3T^{2} \)
19 \( 1 + 35.3T + 6.85e3T^{2} \)
23 \( 1 + 182.T + 1.21e4T^{2} \)
29 \( 1 + 41.5T + 2.43e4T^{2} \)
31 \( 1 - 96.4T + 2.97e4T^{2} \)
37 \( 1 + 172.T + 5.06e4T^{2} \)
41 \( 1 + 385.T + 6.89e4T^{2} \)
43 \( 1 - 360.T + 7.95e4T^{2} \)
47 \( 1 - 72.5T + 1.03e5T^{2} \)
53 \( 1 - 153.T + 1.48e5T^{2} \)
59 \( 1 - 327.T + 2.05e5T^{2} \)
61 \( 1 - 42.4T + 2.26e5T^{2} \)
67 \( 1 - 572.T + 3.00e5T^{2} \)
71 \( 1 + 784.T + 3.57e5T^{2} \)
73 \( 1 + 452.T + 3.89e5T^{2} \)
79 \( 1 + 557.T + 4.93e5T^{2} \)
83 \( 1 + 160.T + 5.71e5T^{2} \)
89 \( 1 + 395.T + 7.04e5T^{2} \)
97 \( 1 + 1.09e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.858459557290438366342213137677, −8.866051262012561106834287146330, −8.294968706009296684933199447217, −6.87420981841409295357834622395, −6.04046047924669748548694766044, −5.37925943780929913833081469135, −4.24473359222431907117372524547, −2.58561068702553925785434231230, −1.86142104909081744572740522094, 0, 1.86142104909081744572740522094, 2.58561068702553925785434231230, 4.24473359222431907117372524547, 5.37925943780929913833081469135, 6.04046047924669748548694766044, 6.87420981841409295357834622395, 8.294968706009296684933199447217, 8.866051262012561106834287146330, 9.858459557290438366342213137677

Graph of the $Z$-function along the critical line