Properties

Label 6-6174e3-1.1-c1e3-0-5
Degree $6$
Conductor $235342236024$
Sign $1$
Analytic cond. $119820.$
Root an. cond. $7.02137$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 6·4-s − 2·5-s + 10·8-s − 6·10-s + 5·11-s − 5·13-s + 15·16-s + 7·17-s − 12·19-s − 12·20-s + 15·22-s + 7·23-s − 10·25-s − 15·26-s + 22·29-s − 3·31-s + 21·32-s + 21·34-s + 3·37-s − 36·38-s − 20·40-s + 7·41-s + 5·43-s + 30·44-s + 21·46-s + 11·47-s + ⋯
L(s)  = 1  + 2.12·2-s + 3·4-s − 0.894·5-s + 3.53·8-s − 1.89·10-s + 1.50·11-s − 1.38·13-s + 15/4·16-s + 1.69·17-s − 2.75·19-s − 2.68·20-s + 3.19·22-s + 1.45·23-s − 2·25-s − 2.94·26-s + 4.08·29-s − 0.538·31-s + 3.71·32-s + 3.60·34-s + 0.493·37-s − 5.83·38-s − 3.16·40-s + 1.09·41-s + 0.762·43-s + 4.52·44-s + 3.09·46-s + 1.60·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 3^{6} \cdot 7^{9}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{3} \cdot 3^{6} \cdot 7^{9}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{3} \cdot 3^{6} \cdot 7^{9}\)
Sign: $1$
Analytic conductor: \(119820.\)
Root analytic conductor: \(7.02137\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{3} \cdot 3^{6} \cdot 7^{9} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(26.33387846\)
\(L(\frac12)\) \(\approx\) \(26.33387846\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{3} \)
3 \( 1 \)
7 \( 1 \)
good5$A_4\times C_2$ \( 1 + 2 T + 14 T^{2} + 19 T^{3} + 14 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
11$A_4\times C_2$ \( 1 - 5 T + p T^{2} - 13 T^{3} + p^{2} T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
13$A_4\times C_2$ \( 1 + 5 T + 17 T^{2} + 33 T^{3} + 17 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \)
17$A_4\times C_2$ \( 1 - 7 T + 37 T^{2} - 147 T^{3} + 37 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} \)
19$A_4\times C_2$ \( 1 + 12 T + 98 T^{2} + 499 T^{3} + 98 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
23$A_4\times C_2$ \( 1 - 7 T + 83 T^{2} - 329 T^{3} + 83 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} \)
29$A_4\times C_2$ \( 1 - 22 T + 8 p T^{2} - 1527 T^{3} + 8 p^{2} T^{4} - 22 p^{2} T^{5} + p^{3} T^{6} \)
31$A_4\times C_2$ \( 1 + 3 T + 47 T^{2} + 47 T^{3} + 47 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
37$A_4\times C_2$ \( 1 - 3 T + 65 T^{2} - 223 T^{3} + 65 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
41$A_4\times C_2$ \( 1 - 7 T + 81 T^{2} - 483 T^{3} + 81 p T^{4} - 7 p^{2} T^{5} + p^{3} T^{6} \)
43$A_4\times C_2$ \( 1 - 5 T + 121 T^{2} - 389 T^{3} + 121 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
47$A_4\times C_2$ \( 1 - 11 T + 95 T^{2} - 487 T^{3} + 95 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} \)
53$A_4\times C_2$ \( 1 - 2 T + 116 T^{2} - 85 T^{3} + 116 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
59$A_4\times C_2$ \( 1 - 26 T + 386 T^{2} - 3601 T^{3} + 386 p T^{4} - 26 p^{2} T^{5} + p^{3} T^{6} \)
61$A_4\times C_2$ \( 1 - 5 T + 35 T^{2} + 201 T^{3} + 35 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
67$A_4\times C_2$ \( 1 - 26 T + 410 T^{2} - 4017 T^{3} + 410 p T^{4} - 26 p^{2} T^{5} + p^{3} T^{6} \)
71$A_4\times C_2$ \( 1 - 4 T + 146 T^{2} - 539 T^{3} + 146 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
73$A_4\times C_2$ \( 1 + T + 63 T^{2} + 649 T^{3} + 63 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
79$A_4\times C_2$ \( 1 + 3 T + 65 T^{2} - 575 T^{3} + 65 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
83$A_4\times C_2$ \( 1 - 13 T + 275 T^{2} - 2159 T^{3} + 275 p T^{4} - 13 p^{2} T^{5} + p^{3} T^{6} \)
89$A_4\times C_2$ \( 1 + 18 T + 284 T^{2} + 2587 T^{3} + 284 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \)
97$A_4\times C_2$ \( 1 + 10 T + 112 T^{2} + 79 T^{3} + 112 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.05969204235580089796237945679, −6.70189794531770153337652559737, −6.68630631065975217673349909790, −6.46716022913654258924601360124, −6.09683226127236084144855959750, −5.88679714662035213996999866928, −5.61216932545719023492761208222, −5.36487885030797892058785977371, −5.22496820526841505796365333136, −4.86830295601892324414513011087, −4.57327468704983209536527526755, −4.31078402922224877298442085201, −4.13490077767670549750352056511, −3.94005539330466432097213482452, −3.88980590607911664533344188541, −3.60907157660242365362797656726, −2.90509893316901272222651451144, −2.88784158704806723109977877064, −2.77798989812842336589987259633, −2.21828783848300003613317813348, −2.03875126568331283517614646068, −1.86560812791810320835059610785, −1.04144660641383905019223582640, −0.74232776409697478440538777523, −0.71322398598342770072200662208, 0.71322398598342770072200662208, 0.74232776409697478440538777523, 1.04144660641383905019223582640, 1.86560812791810320835059610785, 2.03875126568331283517614646068, 2.21828783848300003613317813348, 2.77798989812842336589987259633, 2.88784158704806723109977877064, 2.90509893316901272222651451144, 3.60907157660242365362797656726, 3.88980590607911664533344188541, 3.94005539330466432097213482452, 4.13490077767670549750352056511, 4.31078402922224877298442085201, 4.57327468704983209536527526755, 4.86830295601892324414513011087, 5.22496820526841505796365333136, 5.36487885030797892058785977371, 5.61216932545719023492761208222, 5.88679714662035213996999866928, 6.09683226127236084144855959750, 6.46716022913654258924601360124, 6.68630631065975217673349909790, 6.70189794531770153337652559737, 7.05969204235580089796237945679

Graph of the $Z$-function along the critical line