L(s) = 1 | + 3i·3-s + (7.38 + 7.38i)5-s + (15.7 + 15.7i)7-s − 9·9-s + (−5.04 − 5.04i)11-s + (36.1 + 29.8i)13-s + (−22.1 + 22.1i)15-s + 46.0i·17-s + (−69.9 + 69.9i)19-s + (−47.1 + 47.1i)21-s + 114.·23-s − 16.0i·25-s − 27i·27-s + 191.·29-s + (−56.8 + 56.8i)31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (0.660 + 0.660i)5-s + (0.848 + 0.848i)7-s − 0.333·9-s + (−0.138 − 0.138i)11-s + (0.770 + 0.637i)13-s + (−0.381 + 0.381i)15-s + 0.657i·17-s + (−0.845 + 0.845i)19-s + (−0.489 + 0.489i)21-s + 1.03·23-s − 0.128i·25-s − 0.192i·27-s + 1.22·29-s + (−0.329 + 0.329i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.553 - 0.833i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.553 - 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.395884420\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.395884420\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (-36.1 - 29.8i)T \) |
good | 5 | \( 1 + (-7.38 - 7.38i)T + 125iT^{2} \) |
| 7 | \( 1 + (-15.7 - 15.7i)T + 343iT^{2} \) |
| 11 | \( 1 + (5.04 + 5.04i)T + 1.33e3iT^{2} \) |
| 17 | \( 1 - 46.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (69.9 - 69.9i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 - 114.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 191.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (56.8 - 56.8i)T - 2.97e4iT^{2} \) |
| 37 | \( 1 + (-159. + 159. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + (91.6 + 91.6i)T + 6.89e4iT^{2} \) |
| 43 | \( 1 + 309.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-104. - 104. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + 392.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (178. + 178. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 - 518.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (203. - 203. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + (-62.6 + 62.6i)T - 3.57e5iT^{2} \) |
| 73 | \( 1 + (-174. + 174. i)T - 3.89e5iT^{2} \) |
| 79 | \( 1 - 722. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (805. - 805. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + (-66.0 + 66.0i)T - 7.04e5iT^{2} \) |
| 97 | \( 1 + (894. + 894. i)T + 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62195444894941306865709668872, −9.697236250986422988729366262211, −8.691645095586485736361604437615, −8.211525349246626844863577334680, −6.69031946251170021144058043806, −5.97878931231688274588741961116, −5.05229766257399472307827603087, −3.93872309641981610923917887688, −2.66905423506545591947240128897, −1.63072890309804207226950167795,
0.71713859550421417579982959567, 1.56852098806055637258776876117, 2.95247465726442941217549150645, 4.52104565700168558171887025438, 5.21471956829829767814521117798, 6.36898246981561936797733655716, 7.25656951147166777282391466477, 8.209009841954509642771434755286, 8.861793624578009368101047094233, 9.931869399133539270089358455933