L(s) = 1 | + 3i·3-s + (7.87 − 7.87i)5-s + (15.6 − 15.6i)7-s − 9·9-s + (35.2 − 35.2i)11-s + (39.8 − 24.6i)13-s + (23.6 + 23.6i)15-s − 8.37i·17-s + (−3.94 − 3.94i)19-s + (46.8 + 46.8i)21-s − 192.·23-s + 0.965i·25-s − 27i·27-s − 8.58·29-s + (−214. − 214. i)31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (0.704 − 0.704i)5-s + (0.843 − 0.843i)7-s − 0.333·9-s + (0.965 − 0.965i)11-s + (0.850 − 0.526i)13-s + (0.406 + 0.406i)15-s − 0.119i·17-s + (−0.0475 − 0.0475i)19-s + (0.487 + 0.487i)21-s − 1.74·23-s + 0.00772i·25-s − 0.192i·27-s − 0.0549·29-s + (−1.24 − 1.24i)31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(0.318+0.947i)Λ(4−s)
Λ(s)=(=(624s/2ΓC(s+3/2)L(s)(0.318+0.947i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
0.318+0.947i
|
Analytic conductor: |
36.8171 |
Root analytic conductor: |
6.06771 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :3/2), 0.318+0.947i)
|
Particular Values
L(2) |
≈ |
2.464675413 |
L(21) |
≈ |
2.464675413 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
| 13 | 1+(−39.8+24.6i)T |
good | 5 | 1+(−7.87+7.87i)T−125iT2 |
| 7 | 1+(−15.6+15.6i)T−343iT2 |
| 11 | 1+(−35.2+35.2i)T−1.33e3iT2 |
| 17 | 1+8.37iT−4.91e3T2 |
| 19 | 1+(3.94+3.94i)T+6.85e3iT2 |
| 23 | 1+192.T+1.21e4T2 |
| 29 | 1+8.58T+2.43e4T2 |
| 31 | 1+(214.+214.i)T+2.97e4iT2 |
| 37 | 1+(86.7+86.7i)T+5.06e4iT2 |
| 41 | 1+(−210.+210.i)T−6.89e4iT2 |
| 43 | 1+23.0T+7.95e4T2 |
| 47 | 1+(201.−201.i)T−1.03e5iT2 |
| 53 | 1−73.3T+1.48e5T2 |
| 59 | 1+(240.−240.i)T−2.05e5iT2 |
| 61 | 1+244.T+2.26e5T2 |
| 67 | 1+(−579.−579.i)T+3.00e5iT2 |
| 71 | 1+(−15.1−15.1i)T+3.57e5iT2 |
| 73 | 1+(−564.−564.i)T+3.89e5iT2 |
| 79 | 1+507.iT−4.93e5T2 |
| 83 | 1+(316.+316.i)T+5.71e5iT2 |
| 89 | 1+(−818.−818.i)T+7.04e5iT2 |
| 97 | 1+(−1.16e3+1.16e3i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.00215785987538787860157058404, −9.157068500924300488071836104844, −8.448344666479693887598396534661, −7.56010662115008338358008736913, −6.09065127909394839319091276359, −5.54392059653323310936959646017, −4.30014345873142999747276268523, −3.62643098060382075334988131407, −1.80657922466578258315293002602, −0.71433434350634372443198604577,
1.65338381517421663343594886386, 2.10996391767897053127233782991, 3.67328236189005273401370597405, 4.97068404970793203531783879776, 6.13789303149477211059804738951, 6.59548677962459249981839852383, 7.72616829392497531040220029266, 8.647262836880531603493320136038, 9.442797929210295860039247010727, 10.40206786912738959308233802496