L(s) = 1 | + 3i·3-s + (−2.84 + 2.84i)5-s + (9.35 − 9.35i)7-s − 9·9-s + (−20.3 + 20.3i)11-s + (18.5 − 43.0i)13-s + (−8.53 − 8.53i)15-s + 31.4i·17-s + (32.5 + 32.5i)19-s + (28.0 + 28.0i)21-s − 107.·23-s + 108. i·25-s − 27i·27-s − 231.·29-s + (−3.20 − 3.20i)31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.254 + 0.254i)5-s + (0.505 − 0.505i)7-s − 0.333·9-s + (−0.557 + 0.557i)11-s + (0.395 − 0.918i)13-s + (−0.146 − 0.146i)15-s + 0.448i·17-s + (0.393 + 0.393i)19-s + (0.291 + 0.291i)21-s − 0.972·23-s + 0.870i·25-s − 0.192i·27-s − 1.48·29-s + (−0.0185 − 0.0185i)31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(−0.916+0.399i)Λ(4−s)
Λ(s)=(=(624s/2ΓC(s+3/2)L(s)(−0.916+0.399i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
−0.916+0.399i
|
Analytic conductor: |
36.8171 |
Root analytic conductor: |
6.06771 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :3/2), −0.916+0.399i)
|
Particular Values
L(2) |
≈ |
0.1463697074 |
L(21) |
≈ |
0.1463697074 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
| 13 | 1+(−18.5+43.0i)T |
good | 5 | 1+(2.84−2.84i)T−125iT2 |
| 7 | 1+(−9.35+9.35i)T−343iT2 |
| 11 | 1+(20.3−20.3i)T−1.33e3iT2 |
| 17 | 1−31.4iT−4.91e3T2 |
| 19 | 1+(−32.5−32.5i)T+6.85e3iT2 |
| 23 | 1+107.T+1.21e4T2 |
| 29 | 1+231.T+2.43e4T2 |
| 31 | 1+(3.20+3.20i)T+2.97e4iT2 |
| 37 | 1+(159.+159.i)T+5.06e4iT2 |
| 41 | 1+(68.9−68.9i)T−6.89e4iT2 |
| 43 | 1−213.T+7.95e4T2 |
| 47 | 1+(−95.2+95.2i)T−1.03e5iT2 |
| 53 | 1+647.T+1.48e5T2 |
| 59 | 1+(−182.+182.i)T−2.05e5iT2 |
| 61 | 1+263.T+2.26e5T2 |
| 67 | 1+(637.+637.i)T+3.00e5iT2 |
| 71 | 1+(−229.−229.i)T+3.57e5iT2 |
| 73 | 1+(291.+291.i)T+3.89e5iT2 |
| 79 | 1+633.iT−4.93e5T2 |
| 83 | 1+(583.+583.i)T+5.71e5iT2 |
| 89 | 1+(335.+335.i)T+7.04e5iT2 |
| 97 | 1+(955.−955.i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.69166041149228505161898961232, −9.994187443344325046073894934120, −9.033533035082500665752149560629, −7.85132521298178111379987937424, −7.50586311697702067328760202728, −6.02322406974307723929280042783, −5.18286151052205339116734856510, −4.08999453115787299318395740177, −3.24008607614061261745469378812, −1.71021098549038634445095940808,
0.04072425759240970652590719258, 1.53803175676026674496879003618, 2.67238974088723301315570005347, 4.04520813744437430156445977840, 5.20050610450338252909000194665, 6.05363630296037609913238841804, 7.11413304444942205573083547022, 8.030966152266213873097158544911, 8.683451796674401882361411617211, 9.557764736597928595602571977581