L(s) = 1 | + 3i·3-s + (−2.84 + 2.84i)5-s + (9.35 − 9.35i)7-s − 9·9-s + (−20.3 + 20.3i)11-s + (18.5 − 43.0i)13-s + (−8.53 − 8.53i)15-s + 31.4i·17-s + (32.5 + 32.5i)19-s + (28.0 + 28.0i)21-s − 107.·23-s + 108. i·25-s − 27i·27-s − 231.·29-s + (−3.20 − 3.20i)31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.254 + 0.254i)5-s + (0.505 − 0.505i)7-s − 0.333·9-s + (−0.557 + 0.557i)11-s + (0.395 − 0.918i)13-s + (−0.146 − 0.146i)15-s + 0.448i·17-s + (0.393 + 0.393i)19-s + (0.291 + 0.291i)21-s − 0.972·23-s + 0.870i·25-s − 0.192i·27-s − 1.48·29-s + (−0.0185 − 0.0185i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.916 + 0.399i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.916 + 0.399i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.1463697074\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1463697074\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3iT \) |
| 13 | \( 1 + (-18.5 + 43.0i)T \) |
good | 5 | \( 1 + (2.84 - 2.84i)T - 125iT^{2} \) |
| 7 | \( 1 + (-9.35 + 9.35i)T - 343iT^{2} \) |
| 11 | \( 1 + (20.3 - 20.3i)T - 1.33e3iT^{2} \) |
| 17 | \( 1 - 31.4iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (-32.5 - 32.5i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + 107.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 231.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (3.20 + 3.20i)T + 2.97e4iT^{2} \) |
| 37 | \( 1 + (159. + 159. i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 + (68.9 - 68.9i)T - 6.89e4iT^{2} \) |
| 43 | \( 1 - 213.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-95.2 + 95.2i)T - 1.03e5iT^{2} \) |
| 53 | \( 1 + 647.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-182. + 182. i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + 263.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (637. + 637. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + (-229. - 229. i)T + 3.57e5iT^{2} \) |
| 73 | \( 1 + (291. + 291. i)T + 3.89e5iT^{2} \) |
| 79 | \( 1 + 633. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (583. + 583. i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + (335. + 335. i)T + 7.04e5iT^{2} \) |
| 97 | \( 1 + (955. - 955. i)T - 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69166041149228505161898961232, −9.994187443344325046073894934120, −9.033533035082500665752149560629, −7.85132521298178111379987937424, −7.50586311697702067328760202728, −6.02322406974307723929280042783, −5.18286151052205339116734856510, −4.08999453115787299318395740177, −3.24008607614061261745469378812, −1.71021098549038634445095940808,
0.04072425759240970652590719258, 1.53803175676026674496879003618, 2.67238974088723301315570005347, 4.04520813744437430156445977840, 5.20050610450338252909000194665, 6.05363630296037609913238841804, 7.11413304444942205573083547022, 8.030966152266213873097158544911, 8.683451796674401882361411617211, 9.557764736597928595602571977581