L(s) = 1 | + 3i·3-s + (−1.88 + 1.88i)5-s + (−9.36 + 9.36i)7-s − 9·9-s + (29.2 − 29.2i)11-s + (44.4 + 14.7i)13-s + (−5.65 − 5.65i)15-s + 6.76i·17-s + (17.4 + 17.4i)19-s + (−28.0 − 28.0i)21-s + 123.·23-s + 117. i·25-s − 27i·27-s − 15.8·29-s + (−23.2 − 23.2i)31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (−0.168 + 0.168i)5-s + (−0.505 + 0.505i)7-s − 0.333·9-s + (0.801 − 0.801i)11-s + (0.949 + 0.314i)13-s + (−0.0974 − 0.0974i)15-s + 0.0964i·17-s + (0.210 + 0.210i)19-s + (−0.291 − 0.291i)21-s + 1.11·23-s + 0.943i·25-s − 0.192i·27-s − 0.101·29-s + (−0.134 − 0.134i)31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(−0.477−0.878i)Λ(4−s)
Λ(s)=(=(624s/2ΓC(s+3/2)L(s)(−0.477−0.878i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
−0.477−0.878i
|
Analytic conductor: |
36.8171 |
Root analytic conductor: |
6.06771 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :3/2), −0.477−0.878i)
|
Particular Values
L(2) |
≈ |
1.559511338 |
L(21) |
≈ |
1.559511338 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
| 13 | 1+(−44.4−14.7i)T |
good | 5 | 1+(1.88−1.88i)T−125iT2 |
| 7 | 1+(9.36−9.36i)T−343iT2 |
| 11 | 1+(−29.2+29.2i)T−1.33e3iT2 |
| 17 | 1−6.76iT−4.91e3T2 |
| 19 | 1+(−17.4−17.4i)T+6.85e3iT2 |
| 23 | 1−123.T+1.21e4T2 |
| 29 | 1+15.8T+2.43e4T2 |
| 31 | 1+(23.2+23.2i)T+2.97e4iT2 |
| 37 | 1+(−100.−100.i)T+5.06e4iT2 |
| 41 | 1+(291.−291.i)T−6.89e4iT2 |
| 43 | 1+383.T+7.95e4T2 |
| 47 | 1+(143.−143.i)T−1.03e5iT2 |
| 53 | 1−213.T+1.48e5T2 |
| 59 | 1+(34.0−34.0i)T−2.05e5iT2 |
| 61 | 1+389.T+2.26e5T2 |
| 67 | 1+(−166.−166.i)T+3.00e5iT2 |
| 71 | 1+(417.+417.i)T+3.57e5iT2 |
| 73 | 1+(−409.−409.i)T+3.89e5iT2 |
| 79 | 1+1.04e3iT−4.93e5T2 |
| 83 | 1+(−75.5−75.5i)T+5.71e5iT2 |
| 89 | 1+(−682.−682.i)T+7.04e5iT2 |
| 97 | 1+(−218.+218.i)T−9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55678000707480241244910108210, −9.437782912526796299541530437698, −8.957515877736797767446649535860, −8.053955712906930888256427314687, −6.70393537556833387773020313825, −6.04568983670596202064206084385, −4.97465135225796362420286654139, −3.69554966474797597878808306816, −3.07269957885072638014893404229, −1.28978482137033217364516649320,
0.49607650023207895157858490022, 1.67396705879969409740543692357, 3.18229386312174790557140265417, 4.17835568247006181674055551269, 5.38718068907227824186951208890, 6.62511094261972450573217593906, 7.02594098304313096799259059503, 8.178441268681013681690692135102, 8.975977136861040316028991229643, 9.912882552952982851450082691465