L(s) = 1 | − 3i·3-s + (−6.10 − 6.10i)5-s + (−23.8 − 23.8i)7-s − 9·9-s + (−33.3 − 33.3i)11-s + (−42.6 + 19.5i)13-s + (−18.3 + 18.3i)15-s + 20.6i·17-s + (−50.6 + 50.6i)19-s + (−71.5 + 71.5i)21-s + 38.2·23-s − 50.4i·25-s + 27i·27-s + 184.·29-s + (124. − 124. i)31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.546 − 0.546i)5-s + (−1.28 − 1.28i)7-s − 0.333·9-s + (−0.914 − 0.914i)11-s + (−0.909 + 0.416i)13-s + (−0.315 + 0.315i)15-s + 0.294i·17-s + (−0.611 + 0.611i)19-s + (−0.743 + 0.743i)21-s + 0.346·23-s − 0.403i·25-s + 0.192i·27-s + 1.17·29-s + (0.719 − 0.719i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.378 - 0.925i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.378 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.05951427388\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.05951427388\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3iT \) |
| 13 | \( 1 + (42.6 - 19.5i)T \) |
good | 5 | \( 1 + (6.10 + 6.10i)T + 125iT^{2} \) |
| 7 | \( 1 + (23.8 + 23.8i)T + 343iT^{2} \) |
| 11 | \( 1 + (33.3 + 33.3i)T + 1.33e3iT^{2} \) |
| 17 | \( 1 - 20.6iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (50.6 - 50.6i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 - 38.2T + 1.21e4T^{2} \) |
| 29 | \( 1 - 184.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-124. + 124. i)T - 2.97e4iT^{2} \) |
| 37 | \( 1 + (-55.3 + 55.3i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 + (-39.7 - 39.7i)T + 6.89e4iT^{2} \) |
| 43 | \( 1 - 371.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (416. + 416. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 - 34.9T + 1.48e5T^{2} \) |
| 59 | \( 1 + (54.1 + 54.1i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + 613.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (-694. + 694. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + (-515. + 515. i)T - 3.57e5iT^{2} \) |
| 73 | \( 1 + (216. - 216. i)T - 3.89e5iT^{2} \) |
| 79 | \( 1 - 143. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (587. - 587. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + (967. - 967. i)T - 7.04e5iT^{2} \) |
| 97 | \( 1 + (174. + 174. i)T + 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.606070291707687050665383366902, −8.378592510293674916255292490698, −7.77833214254829017193754593399, −6.81779308709087353417491257854, −6.08133817246404113577576034941, −4.70427099315003174413683275427, −3.72674516913046692685294568697, −2.61972378087299070475356513807, −0.78381052898393190654013952159, −0.02393784988939507548725344958,
2.67140918096854675277765139288, 2.93633241977256398610128029491, 4.50749297134762011811524222167, 5.37308390084214518620267478332, 6.47241137304580928299969977752, 7.31447529338626543059667165719, 8.390976566827701927615349104161, 9.377847715758294775034744000764, 9.955559537244972055741013415857, 10.75796845935532050604588098446