L(s) = 1 | − 3i·3-s + (−6.10 − 6.10i)5-s + (−23.8 − 23.8i)7-s − 9·9-s + (−33.3 − 33.3i)11-s + (−42.6 + 19.5i)13-s + (−18.3 + 18.3i)15-s + 20.6i·17-s + (−50.6 + 50.6i)19-s + (−71.5 + 71.5i)21-s + 38.2·23-s − 50.4i·25-s + 27i·27-s + 184.·29-s + (124. − 124. i)31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.546 − 0.546i)5-s + (−1.28 − 1.28i)7-s − 0.333·9-s + (−0.914 − 0.914i)11-s + (−0.909 + 0.416i)13-s + (−0.315 + 0.315i)15-s + 0.294i·17-s + (−0.611 + 0.611i)19-s + (−0.743 + 0.743i)21-s + 0.346·23-s − 0.403i·25-s + 0.192i·27-s + 1.17·29-s + (0.719 − 0.719i)31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(0.378−0.925i)Λ(4−s)
Λ(s)=(=(624s/2ΓC(s+3/2)L(s)(0.378−0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
0.378−0.925i
|
Analytic conductor: |
36.8171 |
Root analytic conductor: |
6.06771 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(463,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :3/2), 0.378−0.925i)
|
Particular Values
L(2) |
≈ |
0.05951427388 |
L(21) |
≈ |
0.05951427388 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
| 13 | 1+(42.6−19.5i)T |
good | 5 | 1+(6.10+6.10i)T+125iT2 |
| 7 | 1+(23.8+23.8i)T+343iT2 |
| 11 | 1+(33.3+33.3i)T+1.33e3iT2 |
| 17 | 1−20.6iT−4.91e3T2 |
| 19 | 1+(50.6−50.6i)T−6.85e3iT2 |
| 23 | 1−38.2T+1.21e4T2 |
| 29 | 1−184.T+2.43e4T2 |
| 31 | 1+(−124.+124.i)T−2.97e4iT2 |
| 37 | 1+(−55.3+55.3i)T−5.06e4iT2 |
| 41 | 1+(−39.7−39.7i)T+6.89e4iT2 |
| 43 | 1−371.T+7.95e4T2 |
| 47 | 1+(416.+416.i)T+1.03e5iT2 |
| 53 | 1−34.9T+1.48e5T2 |
| 59 | 1+(54.1+54.1i)T+2.05e5iT2 |
| 61 | 1+613.T+2.26e5T2 |
| 67 | 1+(−694.+694.i)T−3.00e5iT2 |
| 71 | 1+(−515.+515.i)T−3.57e5iT2 |
| 73 | 1+(216.−216.i)T−3.89e5iT2 |
| 79 | 1−143.iT−4.93e5T2 |
| 83 | 1+(587.−587.i)T−5.71e5iT2 |
| 89 | 1+(967.−967.i)T−7.04e5iT2 |
| 97 | 1+(174.+174.i)T+9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.606070291707687050665383366902, −8.378592510293674916255292490698, −7.77833214254829017193754593399, −6.81779308709087353417491257854, −6.08133817246404113577576034941, −4.70427099315003174413683275427, −3.72674516913046692685294568697, −2.61972378087299070475356513807, −0.78381052898393190654013952159, −0.02393784988939507548725344958,
2.67140918096854675277765139288, 2.93633241977256398610128029491, 4.50749297134762011811524222167, 5.37308390084214518620267478332, 6.47241137304580928299969977752, 7.31447529338626543059667165719, 8.390976566827701927615349104161, 9.377847715758294775034744000764, 9.955559537244972055741013415857, 10.75796845935532050604588098446