L(s) = 1 | + (−0.486 + 5.17i)3-s − 4.15i·5-s − 6.70i·7-s + (−26.5 − 5.03i)9-s + 32.5·11-s − 13·13-s + (21.4 + 2.01i)15-s + 99.7i·17-s − 73.6i·19-s + (34.6 + 3.26i)21-s − 193.·23-s + 107.·25-s + (38.9 − 134. i)27-s − 138. i·29-s − 165. i·31-s + ⋯ |
L(s) = 1 | + (−0.0935 + 0.995i)3-s − 0.371i·5-s − 0.362i·7-s + (−0.982 − 0.186i)9-s + 0.893·11-s − 0.277·13-s + (0.369 + 0.0347i)15-s + 1.42i·17-s − 0.889i·19-s + (0.360 + 0.0338i)21-s − 1.75·23-s + 0.862·25-s + (0.277 − 0.960i)27-s − 0.889i·29-s − 0.957i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.815 + 0.578i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.815 + 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.491449490\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.491449490\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.486 - 5.17i)T \) |
| 13 | \( 1 + 13T \) |
good | 5 | \( 1 + 4.15iT - 125T^{2} \) |
| 7 | \( 1 + 6.70iT - 343T^{2} \) |
| 11 | \( 1 - 32.5T + 1.33e3T^{2} \) |
| 17 | \( 1 - 99.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 73.6iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 193.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 138. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 165. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 54.1T + 5.06e4T^{2} \) |
| 41 | \( 1 + 512. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 336. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 495.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 537. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 315.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 133.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 131. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 1.07e3T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.02e3T + 3.89e5T^{2} \) |
| 79 | \( 1 + 108. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 1.03e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 139. iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.45e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25656421881258514655449739164, −9.187954448354761302718663275567, −8.678778132149169433395923978340, −7.56057367465996399944597841386, −6.31183404082439410212436006797, −5.52368373736256373564988089882, −4.22728371299375920628511997802, −3.87300166907918583529973674400, −2.22811201260985872633510515824, −0.49606109047677416063822940686,
1.10109442660928578573978571558, 2.32027892129329090036197383744, 3.39459189846217748613586700440, 4.89539845619929448762653579048, 5.99279851695475109692200831358, 6.73361047151951689038363313822, 7.53187304432811777078081937138, 8.453967799315791717973103586886, 9.330345768919509210798622439397, 10.31900082072602348718199460201