L(s) = 1 | + (3.81 + 3.52i)3-s − 18.3i·5-s + 21.7i·7-s + (2.18 + 26.9i)9-s + 64.6·11-s − 13·13-s + (64.6 − 70.1i)15-s − 44.0i·17-s − 30.8i·19-s + (−76.7 + 83.1i)21-s + 85.6·23-s − 211.·25-s + (−86.4 + 110. i)27-s + 22.3i·29-s + 10.5i·31-s + ⋯ |
L(s) = 1 | + (0.735 + 0.677i)3-s − 1.64i·5-s + 1.17i·7-s + (0.0807 + 0.996i)9-s + 1.77·11-s − 0.277·13-s + (1.11 − 1.20i)15-s − 0.628i·17-s − 0.372i·19-s + (−0.797 + 0.864i)21-s + 0.776·23-s − 1.69·25-s + (−0.616 + 0.787i)27-s + 0.143i·29-s + 0.0613i·31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(0.954−0.297i)Λ(4−s)
Λ(s)=(=(624s/2ΓC(s+3/2)L(s)(0.954−0.297i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
0.954−0.297i
|
Analytic conductor: |
36.8171 |
Root analytic conductor: |
6.06771 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(287,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :3/2), 0.954−0.297i)
|
Particular Values
L(2) |
≈ |
2.949615523 |
L(21) |
≈ |
2.949615523 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−3.81−3.52i)T |
| 13 | 1+13T |
good | 5 | 1+18.3iT−125T2 |
| 7 | 1−21.7iT−343T2 |
| 11 | 1−64.6T+1.33e3T2 |
| 17 | 1+44.0iT−4.91e3T2 |
| 19 | 1+30.8iT−6.85e3T2 |
| 23 | 1−85.6T+1.21e4T2 |
| 29 | 1−22.3iT−2.43e4T2 |
| 31 | 1−10.5iT−2.97e4T2 |
| 37 | 1−237.T+5.06e4T2 |
| 41 | 1−35.5iT−6.89e4T2 |
| 43 | 1−499.iT−7.95e4T2 |
| 47 | 1+204.T+1.03e5T2 |
| 53 | 1+669.iT−1.48e5T2 |
| 59 | 1−541.T+2.05e5T2 |
| 61 | 1−929.T+2.26e5T2 |
| 67 | 1−325.iT−3.00e5T2 |
| 71 | 1−307.T+3.57e5T2 |
| 73 | 1−752.T+3.89e5T2 |
| 79 | 1+1.29e3iT−4.93e5T2 |
| 83 | 1−945.T+5.71e5T2 |
| 89 | 1−1.27e3iT−7.04e5T2 |
| 97 | 1+550.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.618579018934826003586827164149, −9.373982165737838246998220173124, −8.723641806960006407503920159683, −8.060788002733661112421507825382, −6.61339397906148251606596344516, −5.31429918342444675782067462574, −4.74046121353493097867489885534, −3.72488822726590339089211268457, −2.35135831127094153389794797475, −1.08654901844638948088925706074,
1.01271512624292967638980271201, 2.28193795944439274603704093679, 3.54237529857513489022102171945, 3.98922522621677361586455814106, 6.11200546867064423202084487179, 6.91070003637956589118017703295, 7.18255970003991982501442918355, 8.252562588083500255085848653711, 9.378876017087823061310725141374, 10.14583337037560467564355126476