L(s) = 1 | + (3.81 + 3.52i)3-s − 18.3i·5-s + 21.7i·7-s + (2.18 + 26.9i)9-s + 64.6·11-s − 13·13-s + (64.6 − 70.1i)15-s − 44.0i·17-s − 30.8i·19-s + (−76.7 + 83.1i)21-s + 85.6·23-s − 211.·25-s + (−86.4 + 110. i)27-s + 22.3i·29-s + 10.5i·31-s + ⋯ |
L(s) = 1 | + (0.735 + 0.677i)3-s − 1.64i·5-s + 1.17i·7-s + (0.0807 + 0.996i)9-s + 1.77·11-s − 0.277·13-s + (1.11 − 1.20i)15-s − 0.628i·17-s − 0.372i·19-s + (−0.797 + 0.864i)21-s + 0.776·23-s − 1.69·25-s + (−0.616 + 0.787i)27-s + 0.143i·29-s + 0.0613i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.949615523\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.949615523\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-3.81 - 3.52i)T \) |
| 13 | \( 1 + 13T \) |
good | 5 | \( 1 + 18.3iT - 125T^{2} \) |
| 7 | \( 1 - 21.7iT - 343T^{2} \) |
| 11 | \( 1 - 64.6T + 1.33e3T^{2} \) |
| 17 | \( 1 + 44.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 30.8iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 85.6T + 1.21e4T^{2} \) |
| 29 | \( 1 - 22.3iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 10.5iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 237.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 35.5iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 499. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 204.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 669. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 541.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 929.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 325. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 307.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 752.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 1.29e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 945.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.27e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 550.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.618579018934826003586827164149, −9.373982165737838246998220173124, −8.723641806960006407503920159683, −8.060788002733661112421507825382, −6.61339397906148251606596344516, −5.31429918342444675782067462574, −4.74046121353493097867489885534, −3.72488822726590339089211268457, −2.35135831127094153389794797475, −1.08654901844638948088925706074,
1.01271512624292967638980271201, 2.28193795944439274603704093679, 3.54237529857513489022102171945, 3.98922522621677361586455814106, 6.11200546867064423202084487179, 6.91070003637956589118017703295, 7.18255970003991982501442918355, 8.252562588083500255085848653711, 9.378876017087823061310725141374, 10.14583337037560467564355126476