Properties

Label 2-624-1.1-c5-0-38
Degree $2$
Conductor $624$
Sign $-1$
Analytic cond. $100.079$
Root an. cond. $10.0039$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 12.4·5-s − 98.5·7-s + 81·9-s + 616.·11-s − 169·13-s − 112.·15-s − 1.78e3·17-s − 1.12e3·19-s + 887.·21-s + 4.72e3·23-s − 2.96e3·25-s − 729·27-s + 3.49e3·29-s − 3.90e3·31-s − 5.54e3·33-s − 1.23e3·35-s + 4.64e3·37-s + 1.52e3·39-s + 5.38e3·41-s + 1.19e4·43-s + 1.01e3·45-s + 1.50e4·47-s − 7.08e3·49-s + 1.60e4·51-s − 8.69e3·53-s + 7.70e3·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.223·5-s − 0.760·7-s + 0.333·9-s + 1.53·11-s − 0.277·13-s − 0.128·15-s − 1.49·17-s − 0.715·19-s + 0.439·21-s + 1.86·23-s − 0.950·25-s − 0.192·27-s + 0.770·29-s − 0.730·31-s − 0.887·33-s − 0.169·35-s + 0.558·37-s + 0.160·39-s + 0.500·41-s + 0.985·43-s + 0.0744·45-s + 0.995·47-s − 0.421·49-s + 0.864·51-s − 0.425·53-s + 0.343·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(100.079\)
Root analytic conductor: \(10.0039\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 624,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 9T \)
13 \( 1 + 169T \)
good5 \( 1 - 12.4T + 3.12e3T^{2} \)
7 \( 1 + 98.5T + 1.68e4T^{2} \)
11 \( 1 - 616.T + 1.61e5T^{2} \)
17 \( 1 + 1.78e3T + 1.41e6T^{2} \)
19 \( 1 + 1.12e3T + 2.47e6T^{2} \)
23 \( 1 - 4.72e3T + 6.43e6T^{2} \)
29 \( 1 - 3.49e3T + 2.05e7T^{2} \)
31 \( 1 + 3.90e3T + 2.86e7T^{2} \)
37 \( 1 - 4.64e3T + 6.93e7T^{2} \)
41 \( 1 - 5.38e3T + 1.15e8T^{2} \)
43 \( 1 - 1.19e4T + 1.47e8T^{2} \)
47 \( 1 - 1.50e4T + 2.29e8T^{2} \)
53 \( 1 + 8.69e3T + 4.18e8T^{2} \)
59 \( 1 - 2.15e4T + 7.14e8T^{2} \)
61 \( 1 + 2.86e3T + 8.44e8T^{2} \)
67 \( 1 + 1.59e4T + 1.35e9T^{2} \)
71 \( 1 + 5.89e4T + 1.80e9T^{2} \)
73 \( 1 + 5.95e4T + 2.07e9T^{2} \)
79 \( 1 + 6.70e4T + 3.07e9T^{2} \)
83 \( 1 - 7.24e4T + 3.93e9T^{2} \)
89 \( 1 - 1.21e5T + 5.58e9T^{2} \)
97 \( 1 + 9.56e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.211431575429029623669179303578, −8.948991191808927418551675755753, −7.33080030700433570920110666198, −6.57339924587691663423424612856, −6.01495936880971091665315909631, −4.68802058595333758505855313838, −3.87730203565922456947232277867, −2.51878139657054586214415591907, −1.21346068121881222445521987019, 0, 1.21346068121881222445521987019, 2.51878139657054586214415591907, 3.87730203565922456947232277867, 4.68802058595333758505855313838, 6.01495936880971091665315909631, 6.57339924587691663423424612856, 7.33080030700433570920110666198, 8.948991191808927418551675755753, 9.211431575429029623669179303578

Graph of the $Z$-function along the critical line