L(s) = 1 | + 9·3-s − 9.73i·5-s − 105. i·7-s + 81·9-s − 269. i·11-s + (227. − 565. i)13-s − 87.6i·15-s + 1.66e3·17-s + 2.82i·19-s − 946. i·21-s − 2.15e3·23-s + 3.03e3·25-s + 729·27-s + 220.·29-s + 788. i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.174i·5-s − 0.811i·7-s + 0.333·9-s − 0.671i·11-s + (0.373 − 0.927i)13-s − 0.100i·15-s + 1.39·17-s + 0.00179i·19-s − 0.468i·21-s − 0.847·23-s + 0.969·25-s + 0.192·27-s + 0.0487·29-s + 0.147i·31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(−0.373+0.927i)Λ(6−s)
Λ(s)=(=(624s/2ΓC(s+5/2)L(s)(−0.373+0.927i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
−0.373+0.927i
|
Analytic conductor: |
100.079 |
Root analytic conductor: |
10.0039 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :5/2), −0.373+0.927i)
|
Particular Values
L(3) |
≈ |
2.500813392 |
L(21) |
≈ |
2.500813392 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−9T |
| 13 | 1+(−227.+565.i)T |
good | 5 | 1+9.73iT−3.12e3T2 |
| 7 | 1+105.iT−1.68e4T2 |
| 11 | 1+269.iT−1.61e5T2 |
| 17 | 1−1.66e3T+1.41e6T2 |
| 19 | 1−2.82iT−2.47e6T2 |
| 23 | 1+2.15e3T+6.43e6T2 |
| 29 | 1−220.T+2.05e7T2 |
| 31 | 1−788.iT−2.86e7T2 |
| 37 | 1+980.iT−6.93e7T2 |
| 41 | 1−1.48e4iT−1.15e8T2 |
| 43 | 1+1.41e4T+1.47e8T2 |
| 47 | 1+2.51e4iT−2.29e8T2 |
| 53 | 1+3.09e4T+4.18e8T2 |
| 59 | 1+2.50e4iT−7.14e8T2 |
| 61 | 1−1.20e4T+8.44e8T2 |
| 67 | 1+1.44e4iT−1.35e9T2 |
| 71 | 1−3.35e4iT−1.80e9T2 |
| 73 | 1+2.58e4iT−2.07e9T2 |
| 79 | 1+1.56e4T+3.07e9T2 |
| 83 | 1+2.81e3iT−3.93e9T2 |
| 89 | 1+1.62e4iT−5.58e9T2 |
| 97 | 1+1.26e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.702959958826889378390510826417, −8.429783374204288222139686105920, −8.027760978500492930722920302208, −7.02588150096757444305266171911, −5.93645725721309801042552248668, −4.91592431606194350669327606818, −3.66743076767519357441118507892, −3.05000605660656356164343634279, −1.45750210164007715785495144194, −0.50701195193075504634761714042,
1.35578923093332468621247579187, 2.35851593384745927861754297867, 3.40371240542544688178072234317, 4.48709561893140109337709841220, 5.59506836407597667101801719221, 6.59672842417611076446066574968, 7.54593360723733782187989035426, 8.413533170859670448526809533543, 9.249422296702242575168032316724, 9.913490408961604823672302631685