Properties

Label 2-624-13.12-c5-0-43
Degree $2$
Conductor $624$
Sign $0.910 + 0.413i$
Analytic cond. $100.079$
Root an. cond. $10.0039$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 37.1i·5-s − 176. i·7-s + 81·9-s + 179. i·11-s + (−554. − 252. i)13-s + 334. i·15-s − 933.·17-s + 2.33e3i·19-s − 1.58e3i·21-s + 2.79e3·23-s + 1.74e3·25-s + 729·27-s + 1.50e3·29-s + 737. i·31-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.663i·5-s − 1.36i·7-s + 0.333·9-s + 0.447i·11-s + (−0.910 − 0.413i)13-s + 0.383i·15-s − 0.783·17-s + 1.48i·19-s − 0.785i·21-s + 1.10·23-s + 0.559·25-s + 0.192·27-s + 0.331·29-s + 0.137i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 + 0.413i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.910 + 0.413i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $0.910 + 0.413i$
Analytic conductor: \(100.079\)
Root analytic conductor: \(10.0039\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{624} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 624,\ (\ :5/2),\ 0.910 + 0.413i)\)

Particular Values

\(L(3)\) \(\approx\) \(2.520809341\)
\(L(\frac12)\) \(\approx\) \(2.520809341\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
13 \( 1 + (554. + 252. i)T \)
good5 \( 1 - 37.1iT - 3.12e3T^{2} \)
7 \( 1 + 176. iT - 1.68e4T^{2} \)
11 \( 1 - 179. iT - 1.61e5T^{2} \)
17 \( 1 + 933.T + 1.41e6T^{2} \)
19 \( 1 - 2.33e3iT - 2.47e6T^{2} \)
23 \( 1 - 2.79e3T + 6.43e6T^{2} \)
29 \( 1 - 1.50e3T + 2.05e7T^{2} \)
31 \( 1 - 737. iT - 2.86e7T^{2} \)
37 \( 1 + 3.77e3iT - 6.93e7T^{2} \)
41 \( 1 - 368. iT - 1.15e8T^{2} \)
43 \( 1 - 2.01e4T + 1.47e8T^{2} \)
47 \( 1 + 2.05e4iT - 2.29e8T^{2} \)
53 \( 1 + 2.50e4T + 4.18e8T^{2} \)
59 \( 1 + 3.53e4iT - 7.14e8T^{2} \)
61 \( 1 - 3.17e4T + 8.44e8T^{2} \)
67 \( 1 - 4.66e4iT - 1.35e9T^{2} \)
71 \( 1 + 5.89e4iT - 1.80e9T^{2} \)
73 \( 1 - 3.41e3iT - 2.07e9T^{2} \)
79 \( 1 - 6.49e4T + 3.07e9T^{2} \)
83 \( 1 + 1.22e4iT - 3.93e9T^{2} \)
89 \( 1 + 6.17e4iT - 5.58e9T^{2} \)
97 \( 1 + 2.80e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.994321990751631726211909834170, −8.934646620525931159010058621146, −7.77719226677921782587794991850, −7.25478744652236884443160063417, −6.48934260075849633188225203430, −5.00046622963145585683443603479, −4.03331587516143746352458234440, −3.12890028179350542320648533678, −1.99689509381207852773075736137, −0.64610803080619483784410394620, 0.845292682097967014254869906180, 2.30475672189947775061111889174, 2.90709900838358671446565450491, 4.53171258024345447444663419704, 5.12671468352420220442452956881, 6.32710787222062382506275000394, 7.29833141133885001936709906848, 8.441244608034686328082594893188, 9.097536459028323040203458296051, 9.382260199361189844657791496096

Graph of the $Z$-function along the critical line