L(s) = 1 | + 9·3-s + 37.1i·5-s − 176. i·7-s + 81·9-s + 179. i·11-s + (−554. − 252. i)13-s + 334. i·15-s − 933.·17-s + 2.33e3i·19-s − 1.58e3i·21-s + 2.79e3·23-s + 1.74e3·25-s + 729·27-s + 1.50e3·29-s + 737. i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.663i·5-s − 1.36i·7-s + 0.333·9-s + 0.447i·11-s + (−0.910 − 0.413i)13-s + 0.383i·15-s − 0.783·17-s + 1.48i·19-s − 0.785i·21-s + 1.10·23-s + 0.559·25-s + 0.192·27-s + 0.331·29-s + 0.137i·31-s + ⋯ |
Λ(s)=(=(624s/2ΓC(s)L(s)(0.910+0.413i)Λ(6−s)
Λ(s)=(=(624s/2ΓC(s+5/2)L(s)(0.910+0.413i)Λ(1−s)
Degree: |
2 |
Conductor: |
624
= 24⋅3⋅13
|
Sign: |
0.910+0.413i
|
Analytic conductor: |
100.079 |
Root analytic conductor: |
10.0039 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ624(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 624, ( :5/2), 0.910+0.413i)
|
Particular Values
L(3) |
≈ |
2.520809341 |
L(21) |
≈ |
2.520809341 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−9T |
| 13 | 1+(554.+252.i)T |
good | 5 | 1−37.1iT−3.12e3T2 |
| 7 | 1+176.iT−1.68e4T2 |
| 11 | 1−179.iT−1.61e5T2 |
| 17 | 1+933.T+1.41e6T2 |
| 19 | 1−2.33e3iT−2.47e6T2 |
| 23 | 1−2.79e3T+6.43e6T2 |
| 29 | 1−1.50e3T+2.05e7T2 |
| 31 | 1−737.iT−2.86e7T2 |
| 37 | 1+3.77e3iT−6.93e7T2 |
| 41 | 1−368.iT−1.15e8T2 |
| 43 | 1−2.01e4T+1.47e8T2 |
| 47 | 1+2.05e4iT−2.29e8T2 |
| 53 | 1+2.50e4T+4.18e8T2 |
| 59 | 1+3.53e4iT−7.14e8T2 |
| 61 | 1−3.17e4T+8.44e8T2 |
| 67 | 1−4.66e4iT−1.35e9T2 |
| 71 | 1+5.89e4iT−1.80e9T2 |
| 73 | 1−3.41e3iT−2.07e9T2 |
| 79 | 1−6.49e4T+3.07e9T2 |
| 83 | 1+1.22e4iT−3.93e9T2 |
| 89 | 1+6.17e4iT−5.58e9T2 |
| 97 | 1+2.80e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.994321990751631726211909834170, −8.934646620525931159010058621146, −7.77719226677921782587794991850, −7.25478744652236884443160063417, −6.48934260075849633188225203430, −5.00046622963145585683443603479, −4.03331587516143746352458234440, −3.12890028179350542320648533678, −1.99689509381207852773075736137, −0.64610803080619483784410394620,
0.845292682097967014254869906180, 2.30475672189947775061111889174, 2.90709900838358671446565450491, 4.53171258024345447444663419704, 5.12671468352420220442452956881, 6.32710787222062382506275000394, 7.29833141133885001936709906848, 8.441244608034686328082594893188, 9.097536459028323040203458296051, 9.382260199361189844657791496096