Properties

Label 2-627-1.1-c1-0-7
Degree $2$
Conductor $627$
Sign $1$
Analytic cond. $5.00662$
Root an. cond. $2.23754$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s + 2·7-s + 9-s + 11-s − 2·12-s − 13-s + 4·16-s + 3·17-s + 19-s + 2·21-s + 6·23-s − 5·25-s + 27-s − 4·28-s + 8·31-s + 33-s − 2·36-s + 2·37-s − 39-s + 6·41-s + 8·43-s − 2·44-s − 6·47-s + 4·48-s − 3·49-s + 3·51-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s + 0.755·7-s + 1/3·9-s + 0.301·11-s − 0.577·12-s − 0.277·13-s + 16-s + 0.727·17-s + 0.229·19-s + 0.436·21-s + 1.25·23-s − 25-s + 0.192·27-s − 0.755·28-s + 1.43·31-s + 0.174·33-s − 1/3·36-s + 0.328·37-s − 0.160·39-s + 0.937·41-s + 1.21·43-s − 0.301·44-s − 0.875·47-s + 0.577·48-s − 3/7·49-s + 0.420·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(627\)    =    \(3 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(5.00662\)
Root analytic conductor: \(2.23754\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 627,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.631559008\)
\(L(\frac12)\) \(\approx\) \(1.631559008\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 - T \)
19 \( 1 - T \)
good2 \( 1 + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 3 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + 13 T + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 - 15 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.38316548933611880460422425874, −9.595676059271080215098446016156, −8.885855868195721527212596861827, −8.047058109228960310569118011279, −7.38987844970363499694447516693, −5.92615105889325146373690957476, −4.88303727227954019406472250536, −4.10497206474885287550986629629, −2.89395743647375258219896560652, −1.21678682746529038884045056230, 1.21678682746529038884045056230, 2.89395743647375258219896560652, 4.10497206474885287550986629629, 4.88303727227954019406472250536, 5.92615105889325146373690957476, 7.38987844970363499694447516693, 8.047058109228960310569118011279, 8.885855868195721527212596861827, 9.595676059271080215098446016156, 10.38316548933611880460422425874

Graph of the $Z$-function along the critical line