Properties

Label 2-627-1.1-c1-0-17
Degree $2$
Conductor $627$
Sign $-1$
Analytic cond. $5.00662$
Root an. cond. $2.23754$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.24·2-s + 3-s + 3.04·4-s − 2.44·5-s − 2.24·6-s − 0.911·7-s − 2.35·8-s + 9-s + 5.49·10-s − 11-s + 3.04·12-s + 2.85·13-s + 2.04·14-s − 2.44·15-s − 0.801·16-s + 1.85·17-s − 2.24·18-s + 19-s − 7.45·20-s − 0.911·21-s + 2.24·22-s − 7.49·23-s − 2.35·24-s + 0.978·25-s − 6.40·26-s + 27-s − 2.78·28-s + ⋯
L(s)  = 1  − 1.58·2-s + 0.577·3-s + 1.52·4-s − 1.09·5-s − 0.917·6-s − 0.344·7-s − 0.833·8-s + 0.333·9-s + 1.73·10-s − 0.301·11-s + 0.880·12-s + 0.790·13-s + 0.547·14-s − 0.631·15-s − 0.200·16-s + 0.448·17-s − 0.529·18-s + 0.229·19-s − 1.66·20-s − 0.198·21-s + 0.479·22-s − 1.56·23-s − 0.481·24-s + 0.195·25-s − 1.25·26-s + 0.192·27-s − 0.525·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(627\)    =    \(3 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(5.00662\)
Root analytic conductor: \(2.23754\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 627,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 + 2.24T + 2T^{2} \)
5 \( 1 + 2.44T + 5T^{2} \)
7 \( 1 + 0.911T + 7T^{2} \)
13 \( 1 - 2.85T + 13T^{2} \)
17 \( 1 - 1.85T + 17T^{2} \)
23 \( 1 + 7.49T + 23T^{2} \)
29 \( 1 + 9.78T + 29T^{2} \)
31 \( 1 - 3.78T + 31T^{2} \)
37 \( 1 + 8.38T + 37T^{2} \)
41 \( 1 - 5.96T + 41T^{2} \)
43 \( 1 - 3.48T + 43T^{2} \)
47 \( 1 + 3.57T + 47T^{2} \)
53 \( 1 + 9.26T + 53T^{2} \)
59 \( 1 - 2.02T + 59T^{2} \)
61 \( 1 + 7.21T + 61T^{2} \)
67 \( 1 + 14.3T + 67T^{2} \)
71 \( 1 - 9.05T + 71T^{2} \)
73 \( 1 - 0.917T + 73T^{2} \)
79 \( 1 + 13.9T + 79T^{2} \)
83 \( 1 + 10.5T + 83T^{2} \)
89 \( 1 + 4.00T + 89T^{2} \)
97 \( 1 - 4.40T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.940900509486699045950458012238, −9.254690122007701533168539136990, −8.313699061430499401122284942532, −7.85836576701250189587419678954, −7.16062138988863472952409263107, −5.96422856770458226141277004652, −4.21525308763110557170585096079, −3.21180224569036182839122700737, −1.69921336580005213243429379944, 0, 1.69921336580005213243429379944, 3.21180224569036182839122700737, 4.21525308763110557170585096079, 5.96422856770458226141277004652, 7.16062138988863472952409263107, 7.85836576701250189587419678954, 8.313699061430499401122284942532, 9.254690122007701533168539136990, 9.940900509486699045950458012238

Graph of the $Z$-function along the critical line