Properties

Label 2-627-1.1-c1-0-25
Degree $2$
Conductor $627$
Sign $-1$
Analytic cond. $5.00662$
Root an. cond. $2.23754$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.760·2-s + 3-s − 1.42·4-s + 1.94·5-s − 0.760·6-s − 5.18·7-s + 2.60·8-s + 9-s − 1.47·10-s + 11-s − 1.42·12-s − 4.23·13-s + 3.94·14-s + 1.94·15-s + 0.861·16-s − 2.28·17-s − 0.760·18-s − 19-s − 2.76·20-s − 5.18·21-s − 0.760·22-s − 5·23-s + 2.60·24-s − 1.22·25-s + 3.22·26-s + 27-s + 7.36·28-s + ⋯
L(s)  = 1  − 0.538·2-s + 0.577·3-s − 0.710·4-s + 0.868·5-s − 0.310·6-s − 1.95·7-s + 0.920·8-s + 0.333·9-s − 0.467·10-s + 0.301·11-s − 0.410·12-s − 1.17·13-s + 1.05·14-s + 0.501·15-s + 0.215·16-s − 0.553·17-s − 0.179·18-s − 0.229·19-s − 0.617·20-s − 1.13·21-s − 0.162·22-s − 1.04·23-s + 0.531·24-s − 0.245·25-s + 0.632·26-s + 0.192·27-s + 1.39·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(627\)    =    \(3 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(5.00662\)
Root analytic conductor: \(2.23754\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 627,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 - T \)
19 \( 1 + T \)
good2 \( 1 + 0.760T + 2T^{2} \)
5 \( 1 - 1.94T + 5T^{2} \)
7 \( 1 + 5.18T + 7T^{2} \)
13 \( 1 + 4.23T + 13T^{2} \)
17 \( 1 + 2.28T + 17T^{2} \)
23 \( 1 + 5T + 23T^{2} \)
29 \( 1 + 5.13T + 29T^{2} \)
31 \( 1 - 6.66T + 31T^{2} \)
37 \( 1 + 9.72T + 37T^{2} \)
41 \( 1 + 0.239T + 41T^{2} \)
43 \( 1 + 0.578T + 43T^{2} \)
47 \( 1 - 3.12T + 47T^{2} \)
53 \( 1 + 8.82T + 53T^{2} \)
59 \( 1 - 9.54T + 59T^{2} \)
61 \( 1 + 9.46T + 61T^{2} \)
67 \( 1 + 10.9T + 67T^{2} \)
71 \( 1 + 7.23T + 71T^{2} \)
73 \( 1 + 5.12T + 73T^{2} \)
79 \( 1 - 7.03T + 79T^{2} \)
83 \( 1 - 13.3T + 83T^{2} \)
89 \( 1 + 6.66T + 89T^{2} \)
97 \( 1 + 8.74T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.945960558921735708211469519964, −9.380918201746149763267946659055, −8.797656632967591469260696952254, −7.58100862009213872539159022626, −6.66591394883088851365464324913, −5.75014661566536491598819371277, −4.40703345469512683488161062797, −3.31743313767316729267868515798, −2.07609450278487697987943329898, 0, 2.07609450278487697987943329898, 3.31743313767316729267868515798, 4.40703345469512683488161062797, 5.75014661566536491598819371277, 6.66591394883088851365464324913, 7.58100862009213872539159022626, 8.797656632967591469260696952254, 9.380918201746149763267946659055, 9.945960558921735708211469519964

Graph of the $Z$-function along the critical line