Properties

Label 2-627-1.1-c3-0-6
Degree $2$
Conductor $627$
Sign $1$
Analytic cond. $36.9941$
Root an. cond. $6.08228$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.70·2-s + 3·3-s − 0.678·4-s − 4.71·5-s − 8.11·6-s − 33.7·7-s + 23.4·8-s + 9·9-s + 12.7·10-s − 11·11-s − 2.03·12-s + 58.7·13-s + 91.2·14-s − 14.1·15-s − 58.1·16-s − 115.·17-s − 24.3·18-s + 19·19-s + 3.19·20-s − 101.·21-s + 29.7·22-s − 188.·23-s + 70.4·24-s − 102.·25-s − 158.·26-s + 27·27-s + 22.8·28-s + ⋯
L(s)  = 1  − 0.956·2-s + 0.577·3-s − 0.0847·4-s − 0.421·5-s − 0.552·6-s − 1.82·7-s + 1.03·8-s + 0.333·9-s + 0.403·10-s − 0.301·11-s − 0.0489·12-s + 1.25·13-s + 1.74·14-s − 0.243·15-s − 0.908·16-s − 1.64·17-s − 0.318·18-s + 0.229·19-s + 0.0357·20-s − 1.05·21-s + 0.288·22-s − 1.70·23-s + 0.599·24-s − 0.821·25-s − 1.19·26-s + 0.192·27-s + 0.154·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(627\)    =    \(3 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(36.9941\)
Root analytic conductor: \(6.08228\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 627,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5457159542\)
\(L(\frac12)\) \(\approx\) \(0.5457159542\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
11 \( 1 + 11T \)
19 \( 1 - 19T \)
good2 \( 1 + 2.70T + 8T^{2} \)
5 \( 1 + 4.71T + 125T^{2} \)
7 \( 1 + 33.7T + 343T^{2} \)
13 \( 1 - 58.7T + 2.19e3T^{2} \)
17 \( 1 + 115.T + 4.91e3T^{2} \)
23 \( 1 + 188.T + 1.21e4T^{2} \)
29 \( 1 - 180.T + 2.43e4T^{2} \)
31 \( 1 + 129.T + 2.97e4T^{2} \)
37 \( 1 + 132.T + 5.06e4T^{2} \)
41 \( 1 + 283.T + 6.89e4T^{2} \)
43 \( 1 - 232.T + 7.95e4T^{2} \)
47 \( 1 - 488.T + 1.03e5T^{2} \)
53 \( 1 - 555.T + 1.48e5T^{2} \)
59 \( 1 + 132.T + 2.05e5T^{2} \)
61 \( 1 + 306.T + 2.26e5T^{2} \)
67 \( 1 - 89.4T + 3.00e5T^{2} \)
71 \( 1 - 453.T + 3.57e5T^{2} \)
73 \( 1 + 613.T + 3.89e5T^{2} \)
79 \( 1 + 979.T + 4.93e5T^{2} \)
83 \( 1 - 1.33e3T + 5.71e5T^{2} \)
89 \( 1 - 803.T + 7.04e5T^{2} \)
97 \( 1 - 1.61e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13672143801952350953938636450, −9.090648274215548494648120916157, −8.759495386985136272781989942317, −7.77232297747280927456993880909, −6.84563147432029822482199868043, −5.96996627041269426703799078348, −4.22814520671627893702856436251, −3.55726652961332625977487069887, −2.16220435053137599787213651457, −0.47162075064710513122437914262, 0.47162075064710513122437914262, 2.16220435053137599787213651457, 3.55726652961332625977487069887, 4.22814520671627893702856436251, 5.96996627041269426703799078348, 6.84563147432029822482199868043, 7.77232297747280927456993880909, 8.759495386985136272781989942317, 9.090648274215548494648120916157, 10.13672143801952350953938636450

Graph of the $Z$-function along the critical line