L(s) = 1 | − 2.70·2-s + 3·3-s − 0.678·4-s − 4.71·5-s − 8.11·6-s − 33.7·7-s + 23.4·8-s + 9·9-s + 12.7·10-s − 11·11-s − 2.03·12-s + 58.7·13-s + 91.2·14-s − 14.1·15-s − 58.1·16-s − 115.·17-s − 24.3·18-s + 19·19-s + 3.19·20-s − 101.·21-s + 29.7·22-s − 188.·23-s + 70.4·24-s − 102.·25-s − 158.·26-s + 27·27-s + 22.8·28-s + ⋯ |
L(s) = 1 | − 0.956·2-s + 0.577·3-s − 0.0847·4-s − 0.421·5-s − 0.552·6-s − 1.82·7-s + 1.03·8-s + 0.333·9-s + 0.403·10-s − 0.301·11-s − 0.0489·12-s + 1.25·13-s + 1.74·14-s − 0.243·15-s − 0.908·16-s − 1.64·17-s − 0.318·18-s + 0.229·19-s + 0.0357·20-s − 1.05·21-s + 0.288·22-s − 1.70·23-s + 0.599·24-s − 0.821·25-s − 1.19·26-s + 0.192·27-s + 0.154·28-s + ⋯ |
Λ(s)=(=(627s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(627s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.5457159542 |
L(21) |
≈ |
0.5457159542 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−3T |
| 11 | 1+11T |
| 19 | 1−19T |
good | 2 | 1+2.70T+8T2 |
| 5 | 1+4.71T+125T2 |
| 7 | 1+33.7T+343T2 |
| 13 | 1−58.7T+2.19e3T2 |
| 17 | 1+115.T+4.91e3T2 |
| 23 | 1+188.T+1.21e4T2 |
| 29 | 1−180.T+2.43e4T2 |
| 31 | 1+129.T+2.97e4T2 |
| 37 | 1+132.T+5.06e4T2 |
| 41 | 1+283.T+6.89e4T2 |
| 43 | 1−232.T+7.95e4T2 |
| 47 | 1−488.T+1.03e5T2 |
| 53 | 1−555.T+1.48e5T2 |
| 59 | 1+132.T+2.05e5T2 |
| 61 | 1+306.T+2.26e5T2 |
| 67 | 1−89.4T+3.00e5T2 |
| 71 | 1−453.T+3.57e5T2 |
| 73 | 1+613.T+3.89e5T2 |
| 79 | 1+979.T+4.93e5T2 |
| 83 | 1−1.33e3T+5.71e5T2 |
| 89 | 1−803.T+7.04e5T2 |
| 97 | 1−1.61e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.13672143801952350953938636450, −9.090648274215548494648120916157, −8.759495386985136272781989942317, −7.77232297747280927456993880909, −6.84563147432029822482199868043, −5.96996627041269426703799078348, −4.22814520671627893702856436251, −3.55726652961332625977487069887, −2.16220435053137599787213651457, −0.47162075064710513122437914262,
0.47162075064710513122437914262, 2.16220435053137599787213651457, 3.55726652961332625977487069887, 4.22814520671627893702856436251, 5.96996627041269426703799078348, 6.84563147432029822482199868043, 7.77232297747280927456993880909, 8.759495386985136272781989942317, 9.090648274215548494648120916157, 10.13672143801952350953938636450