L(s) = 1 | + (19.4 − 33.7i)2-s + (−502. − 871. i)4-s + (−1.23e3 + 2.14e3i)5-s + (6.00e3 − 2.08e3i)7-s − 1.92e4·8-s + (4.82e4 + 8.35e4i)10-s + (9.74e3 + 1.68e4i)11-s + 2.30e4·13-s + (4.67e4 − 2.43e5i)14-s + (−1.17e5 + 2.03e5i)16-s + (2.82e5 + 4.88e5i)17-s + (2.59e5 − 4.49e5i)19-s + 2.49e6·20-s + 7.59e5·22-s + (7.72e5 − 1.33e6i)23-s + ⋯ |
L(s) = 1 | + (0.860 − 1.49i)2-s + (−0.982 − 1.70i)4-s + (−0.886 + 1.53i)5-s + (0.944 − 0.327i)7-s − 1.66·8-s + (1.52 + 2.64i)10-s + (0.200 + 0.347i)11-s + 0.224·13-s + (0.325 − 1.69i)14-s + (−0.447 + 0.775i)16-s + (0.818 + 1.41i)17-s + (0.457 − 0.791i)19-s + 3.48·20-s + 0.690·22-s + (0.575 − 0.997i)23-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(0.386+0.922i)Λ(10−s)
Λ(s)=(=(63s/2ΓC(s+9/2)L(s)(0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
0.386+0.922i
|
Analytic conductor: |
32.4472 |
Root analytic conductor: |
5.69624 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :9/2), 0.386+0.922i)
|
Particular Values
L(5) |
≈ |
2.50162−1.66379i |
L(21) |
≈ |
2.50162−1.66379i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−6.00e3+2.08e3i)T |
good | 2 | 1+(−19.4+33.7i)T+(−256−443.i)T2 |
| 5 | 1+(1.23e3−2.14e3i)T+(−9.76e5−1.69e6i)T2 |
| 11 | 1+(−9.74e3−1.68e4i)T+(−1.17e9+2.04e9i)T2 |
| 13 | 1−2.30e4T+1.06e10T2 |
| 17 | 1+(−2.82e5−4.88e5i)T+(−5.92e10+1.02e11i)T2 |
| 19 | 1+(−2.59e5+4.49e5i)T+(−1.61e11−2.79e11i)T2 |
| 23 | 1+(−7.72e5+1.33e6i)T+(−9.00e11−1.55e12i)T2 |
| 29 | 1−4.76e6T+1.45e13T2 |
| 31 | 1+(−2.35e6−4.08e6i)T+(−1.32e13+2.28e13i)T2 |
| 37 | 1+(9.94e6−1.72e7i)T+(−6.49e13−1.12e14i)T2 |
| 41 | 1−1.93e7T+3.27e14T2 |
| 43 | 1−9.57e5T+5.02e14T2 |
| 47 | 1+(1.71e7−2.97e7i)T+(−5.59e14−9.69e14i)T2 |
| 53 | 1+(−1.01e7−1.75e7i)T+(−1.64e15+2.85e15i)T2 |
| 59 | 1+(6.21e6+1.07e7i)T+(−4.33e15+7.50e15i)T2 |
| 61 | 1+(−8.00e7+1.38e8i)T+(−5.84e15−1.01e16i)T2 |
| 67 | 1+(−3.39e7−5.88e7i)T+(−1.36e16+2.35e16i)T2 |
| 71 | 1−2.84e8T+4.58e16T2 |
| 73 | 1+(−1.30e8−2.26e8i)T+(−2.94e16+5.09e16i)T2 |
| 79 | 1+(4.18e7−7.25e7i)T+(−5.99e16−1.03e17i)T2 |
| 83 | 1+1.69e7T+1.86e17T2 |
| 89 | 1+(−5.07e7+8.78e7i)T+(−1.75e17−3.03e17i)T2 |
| 97 | 1−8.99e8T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.53057445015252983121739446682, −11.60233135626335828723701267336, −10.82898641070659082680249477441, −10.20876934652773416366927665335, −8.127561600084179093342251201393, −6.66190219131647015316276787398, −4.76093235905677142088362011175, −3.67087886334730060646385634896, −2.65206715669405073593106356705, −1.12800689203215577597028500405,
0.914910810276086381483152321107, 3.77636222587912474958590271424, 4.92715911574459564162440570211, 5.55685848509580674421774426140, 7.44956207370274259754484330149, 8.157464275081787314992244236692, 9.115309302675675713787944072645, 11.64210304208516003529320861155, 12.32982951215497133249809720584, 13.54678716604371559666046169731