L(s) = 1 | + (8.42 + 14.5i)2-s + (−7.74 + 46.1i)3-s + (−77.8 + 134. i)4-s + (−239. + 413. i)5-s + (−738. + 275. i)6-s + (−171.5 − 297. i)7-s − 467.·8-s + (−2.06e3 − 714. i)9-s − 8.05e3·10-s + (3.72e3 + 6.45e3i)11-s + (−5.61e3 − 4.63e3i)12-s + (5.03e3 − 8.72e3i)13-s + (2.88e3 − 5.00e3i)14-s + (−1.72e4 − 1.42e4i)15-s + (6.03e3 + 1.04e4i)16-s + 3.59e3·17-s + ⋯ |
L(s) = 1 | + (0.744 + 1.28i)2-s + (−0.165 + 0.986i)3-s + (−0.608 + 1.05i)4-s + (−0.855 + 1.48i)5-s + (−1.39 + 0.520i)6-s + (−0.188 − 0.327i)7-s − 0.322·8-s + (−0.945 − 0.326i)9-s − 2.54·10-s + (0.844 + 1.46i)11-s + (−0.938 − 0.774i)12-s + (0.636 − 1.10i)13-s + (0.281 − 0.487i)14-s + (−1.31 − 1.08i)15-s + (0.368 + 0.637i)16-s + 0.177·17-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(−0.157+0.987i)Λ(8−s)
Λ(s)=(=(63s/2ΓC(s+7/2)L(s)(−0.157+0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
−0.157+0.987i
|
Analytic conductor: |
19.6802 |
Root analytic conductor: |
4.43624 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :7/2), −0.157+0.987i)
|
Particular Values
L(4) |
≈ |
1.24736−1.46246i |
L(21) |
≈ |
1.24736−1.46246i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(7.74−46.1i)T |
| 7 | 1+(171.5+297.i)T |
good | 2 | 1+(−8.42−14.5i)T+(−64+110.i)T2 |
| 5 | 1+(239.−413.i)T+(−3.90e4−6.76e4i)T2 |
| 11 | 1+(−3.72e3−6.45e3i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1+(−5.03e3+8.72e3i)T+(−3.13e7−5.43e7i)T2 |
| 17 | 1−3.59e3T+4.10e8T2 |
| 19 | 1−1.38e4T+8.93e8T2 |
| 23 | 1+(4.10e4−7.10e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(−1.17e4−2.04e4i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+(−8.13e4+1.40e5i)T+(−1.37e10−2.38e10i)T2 |
| 37 | 1+2.98e4T+9.49e10T2 |
| 41 | 1+(−1.16e5+2.01e5i)T+(−9.73e10−1.68e11i)T2 |
| 43 | 1+(2.83e5+4.91e5i)T+(−1.35e11+2.35e11i)T2 |
| 47 | 1+(−2.58e5−4.47e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1+8.89e5T+1.17e12T2 |
| 59 | 1+(7.91e5−1.37e6i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(6.63e5+1.14e6i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(2.04e6−3.53e6i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1+2.03e6T+9.09e12T2 |
| 73 | 1−4.81e6T+1.10e13T2 |
| 79 | 1+(−4.01e6−6.95e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(1.44e6+2.50e6i)T+(−1.35e13+2.35e13i)T2 |
| 89 | 1+2.96e6T+4.42e13T2 |
| 97 | 1+(−1.63e6−2.82e6i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.70000186519367456942184928302, −13.80423858309824188501461370378, −12.07249826597750461192293943815, −10.84986338005258066164917288614, −9.843968409373144213514078509609, −7.88613125038514239445831640760, −6.98100867006250586048144838472, −5.82520062591746039855394579683, −4.25139900951174705139294249146, −3.41370728299643859441811378459,
0.60260249058226886645683524577, 1.53213822784396635262681790047, 3.39310897971547671604669763617, 4.69027830169018431413242429769, 6.18694451917035306845775326691, 8.166172949553270206501120403384, 9.054811063991160473773022710369, 11.14649055344862276126221962047, 11.88736439631267706541083337176, 12.38436984610783824300938697760