L(s) = 1 | + (−8.75 − 15.1i)2-s + (−30.3 − 35.6i)3-s + (−89.2 + 154. i)4-s + (242. − 419. i)5-s + (−274. + 771. i)6-s + (−171.5 − 297. i)7-s + 885.·8-s + (−349. + 2.15e3i)9-s − 8.48e3·10-s + (779. + 1.34e3i)11-s + (8.21e3 − 1.50e3i)12-s + (−6.43e3 + 1.11e4i)13-s + (−3.00e3 + 5.20e3i)14-s + (−2.22e4 + 4.09e3i)15-s + (3.67e3 + 6.36e3i)16-s + 1.35e4·17-s + ⋯ |
L(s) = 1 | + (−0.773 − 1.34i)2-s + (−0.648 − 0.761i)3-s + (−0.697 + 1.20i)4-s + (0.867 − 1.50i)5-s + (−0.519 + 1.45i)6-s + (−0.188 − 0.327i)7-s + 0.611·8-s + (−0.159 + 0.987i)9-s − 2.68·10-s + (0.176 + 0.305i)11-s + (1.37 − 0.251i)12-s + (−0.812 + 1.40i)13-s + (−0.292 + 0.506i)14-s + (−1.70 + 0.313i)15-s + (0.224 + 0.388i)16-s + 0.668·17-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(0.999−0.0141i)Λ(8−s)
Λ(s)=(=(63s/2ΓC(s+7/2)L(s)(0.999−0.0141i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
0.999−0.0141i
|
Analytic conductor: |
19.6802 |
Root analytic conductor: |
4.43624 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :7/2), 0.999−0.0141i)
|
Particular Values
L(4) |
≈ |
0.110277+0.000778227i |
L(21) |
≈ |
0.110277+0.000778227i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(30.3+35.6i)T |
| 7 | 1+(171.5+297.i)T |
good | 2 | 1+(8.75+15.1i)T+(−64+110.i)T2 |
| 5 | 1+(−242.+419.i)T+(−3.90e4−6.76e4i)T2 |
| 11 | 1+(−779.−1.34e3i)T+(−9.74e6+1.68e7i)T2 |
| 13 | 1+(6.43e3−1.11e4i)T+(−3.13e7−5.43e7i)T2 |
| 17 | 1−1.35e4T+4.10e8T2 |
| 19 | 1+1.81e4T+8.93e8T2 |
| 23 | 1+(4.20e4−7.28e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(5.28e4+9.15e4i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+(−6.86e4+1.18e5i)T+(−1.37e10−2.38e10i)T2 |
| 37 | 1+2.44e5T+9.49e10T2 |
| 41 | 1+(9.97e4−1.72e5i)T+(−9.73e10−1.68e11i)T2 |
| 43 | 1+(−4.05e5−7.01e5i)T+(−1.35e11+2.35e11i)T2 |
| 47 | 1+(−2.97e5−5.14e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1+1.84e6T+1.17e12T2 |
| 59 | 1+(−8.24e5+1.42e6i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(9.91e5+1.71e6i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(2.68e5−4.65e5i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1+4.85e6T+9.09e12T2 |
| 73 | 1+1.55e6T+1.10e13T2 |
| 79 | 1+(9.15e5+1.58e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(−2.86e6−4.96e6i)T+(−1.35e13+2.35e13i)T2 |
| 89 | 1+3.26e6T+4.42e13T2 |
| 97 | 1+(2.02e5+3.50e5i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.95252378541249433988149279015, −12.24317742378459027831216014848, −11.43743313292330210766575966771, −9.900167296259189186433893871276, −9.300520833294399554298761509231, −7.891073990937244362612861919993, −6.06958730060397181918010321830, −4.51927427168953276214589666188, −2.02653537765451099242302725465, −1.29212961748470927660271159140,
0.05902122115011443176972337194, 3.01192611828824422347616387509, 5.46089958404344092160101573983, 6.19624477322929972898990540493, 7.22541105820751837540663464882, 8.820238803516563546455561031098, 10.18260672316855929036644622074, 10.44409170974104863833654610650, 12.26803802092806251014819239202, 14.25219248641726789751685786250