Properties

Label 2-63-9.4-c7-0-19
Degree $2$
Conductor $63$
Sign $0.626 + 0.779i$
Analytic cond. $19.6802$
Root an. cond. $4.43624$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−7.72 − 13.3i)2-s + (11.6 + 45.2i)3-s + (−55.3 + 95.8i)4-s + (15.6 − 27.0i)5-s + (516. − 505. i)6-s + (−171.5 − 297. i)7-s − 267.·8-s + (−1.91e3 + 1.05e3i)9-s − 483.·10-s + (337. + 585. i)11-s + (−4.98e3 − 1.39e3i)12-s + (1.48e3 − 2.57e3i)13-s + (−2.64e3 + 4.58e3i)14-s + (1.40e3 + 393. i)15-s + (9.15e3 + 1.58e4i)16-s + 1.32e4·17-s + ⋯
L(s)  = 1  + (−0.682 − 1.18i)2-s + (0.248 + 0.968i)3-s + (−0.432 + 0.748i)4-s + (0.0559 − 0.0969i)5-s + (0.975 − 0.955i)6-s + (−0.188 − 0.327i)7-s − 0.185·8-s + (−0.876 + 0.481i)9-s − 0.152·10-s + (0.0765 + 0.132i)11-s + (−0.832 − 0.232i)12-s + (0.187 − 0.325i)13-s + (−0.258 + 0.446i)14-s + (0.107 + 0.0301i)15-s + (0.558 + 0.967i)16-s + 0.653·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.626 + 0.779i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.626 + 0.779i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63\)    =    \(3^{2} \cdot 7\)
Sign: $0.626 + 0.779i$
Analytic conductor: \(19.6802\)
Root analytic conductor: \(4.43624\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{63} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 63,\ (\ :7/2),\ 0.626 + 0.779i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.18831 - 0.569470i\)
\(L(\frac12)\) \(\approx\) \(1.18831 - 0.569470i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-11.6 - 45.2i)T \)
7 \( 1 + (171.5 + 297. i)T \)
good2 \( 1 + (7.72 + 13.3i)T + (-64 + 110. i)T^{2} \)
5 \( 1 + (-15.6 + 27.0i)T + (-3.90e4 - 6.76e4i)T^{2} \)
11 \( 1 + (-337. - 585. i)T + (-9.74e6 + 1.68e7i)T^{2} \)
13 \( 1 + (-1.48e3 + 2.57e3i)T + (-3.13e7 - 5.43e7i)T^{2} \)
17 \( 1 - 1.32e4T + 4.10e8T^{2} \)
19 \( 1 - 4.03e4T + 8.93e8T^{2} \)
23 \( 1 + (-1.40e3 + 2.42e3i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (5.03e4 + 8.71e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 + (-7.03e4 + 1.21e5i)T + (-1.37e10 - 2.38e10i)T^{2} \)
37 \( 1 - 4.52e5T + 9.49e10T^{2} \)
41 \( 1 + (-3.45e5 + 5.98e5i)T + (-9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (-1.67e5 - 2.90e5i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 + (-1.54e5 - 2.67e5i)T + (-2.53e11 + 4.38e11i)T^{2} \)
53 \( 1 - 1.56e5T + 1.17e12T^{2} \)
59 \( 1 + (-8.73e5 + 1.51e6i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (-1.39e6 - 2.41e6i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (-4.55e5 + 7.89e5i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + 3.70e5T + 9.09e12T^{2} \)
73 \( 1 - 2.89e5T + 1.10e13T^{2} \)
79 \( 1 + (-8.17e4 - 1.41e5i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 + (-1.24e6 - 2.16e6i)T + (-1.35e13 + 2.35e13i)T^{2} \)
89 \( 1 + 9.04e6T + 4.42e13T^{2} \)
97 \( 1 + (-3.35e5 - 5.80e5i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13398468116418885341654124146, −11.76270541847321429224440234060, −10.89115682947971747425101685146, −9.853553059919718244912351930442, −9.256841778243820049829967934503, −7.85945538588442760826153938283, −5.62976010694115014825037030206, −3.86698317490954763733624079648, −2.70593074478762877329669141034, −0.853619748898797986459812733780, 0.919301310875239249746706992953, 2.95293719831774267110986679604, 5.61520158044253037487797790232, 6.65179832303583712890898730669, 7.63641225632915174243697567128, 8.619971562780052897657588948240, 9.657669445182808520031022145316, 11.58565274292716038556293076528, 12.61221994530803650541787527282, 13.99302169608105618034274078907

Graph of the $Z$-function along the critical line