L(s) = 1 | + (8.53 − 14.7i)2-s + (46.7 − 0.978i)3-s + (−81.6 − 141. i)4-s + (117. + 202. i)5-s + (384. − 699. i)6-s + (−171.5 + 297. i)7-s − 601.·8-s + (2.18e3 − 91.4i)9-s + 3.99e3·10-s + (3.33e3 − 5.78e3i)11-s + (−3.95e3 − 6.53e3i)12-s + (−4.94e3 − 8.57e3i)13-s + (2.92e3 + 5.06e3i)14-s + (5.67e3 + 9.37e3i)15-s + (5.31e3 − 9.20e3i)16-s − 1.67e4·17-s + ⋯ |
L(s) = 1 | + (0.754 − 1.30i)2-s + (0.999 − 0.0209i)3-s + (−0.637 − 1.10i)4-s + (0.419 + 0.726i)5-s + (0.726 − 1.32i)6-s + (−0.188 + 0.327i)7-s − 0.415·8-s + (0.999 − 0.0418i)9-s + 1.26·10-s + (0.756 − 1.31i)11-s + (−0.660 − 1.09i)12-s + (−0.624 − 1.08i)13-s + (0.285 + 0.493i)14-s + (0.434 + 0.717i)15-s + (0.324 − 0.561i)16-s − 0.827·17-s + ⋯ |
Λ(s)=(=(63s/2ΓC(s)L(s)(−0.132+0.991i)Λ(8−s)
Λ(s)=(=(63s/2ΓC(s+7/2)L(s)(−0.132+0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
63
= 32⋅7
|
Sign: |
−0.132+0.991i
|
Analytic conductor: |
19.6802 |
Root analytic conductor: |
4.43624 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ63(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 63, ( :7/2), −0.132+0.991i)
|
Particular Values
L(4) |
≈ |
2.87408−3.28321i |
L(21) |
≈ |
2.87408−3.28321i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−46.7+0.978i)T |
| 7 | 1+(171.5−297.i)T |
good | 2 | 1+(−8.53+14.7i)T+(−64−110.i)T2 |
| 5 | 1+(−117.−202.i)T+(−3.90e4+6.76e4i)T2 |
| 11 | 1+(−3.33e3+5.78e3i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1+(4.94e3+8.57e3i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1+1.67e4T+4.10e8T2 |
| 19 | 1−4.98e4T+8.93e8T2 |
| 23 | 1+(−2.61e4−4.53e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(1.27e5−2.20e5i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1+(−7.56e4−1.31e5i)T+(−1.37e10+2.38e10i)T2 |
| 37 | 1+5.66e5T+9.49e10T2 |
| 41 | 1+(1.52e4+2.63e4i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+(2.82e5−4.89e5i)T+(−1.35e11−2.35e11i)T2 |
| 47 | 1+(−7.80e4+1.35e5i)T+(−2.53e11−4.38e11i)T2 |
| 53 | 1−3.30e5T+1.17e12T2 |
| 59 | 1+(−2.06e5−3.58e5i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(5.89e5−1.02e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(−5.80e5−1.00e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+3.64e6T+9.09e12T2 |
| 73 | 1−3.90e5T+1.10e13T2 |
| 79 | 1+(2.66e6−4.61e6i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1+(−2.96e6+5.13e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1−9.78e4T+4.42e13T2 |
| 97 | 1+(2.68e6−4.65e6i)T+(−4.03e13−6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.31879191038108700306240864205, −12.16438477177205358851241356066, −10.97432712883316485833951810293, −9.992332527655170097066935349031, −8.852802180001710085472917557699, −7.13894290116044254110933761017, −5.30675937853786609486688429899, −3.37933169238087808242792152593, −2.92835581780801126289277623479, −1.36255357384240756881360490485,
1.81526123988989159044856730374, 4.05327040207265340480746625931, 4.93565990112440573594995267194, 6.74801193006197639717857714672, 7.48184479109248150799174488780, 8.985529379817370399691612125754, 9.789521848152598115764183050960, 12.11752313996752501076253029409, 13.27992436111741196923710191899, 13.90022049950359144201040475701